
Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Parallel design patterns

Marco Danelutto

Dept. of Computer Science, University of Pisa, Italy

May 2011, Pisa



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Contents

1 Introduction

2 Parallel design patterns

3 Finding concurrency design space

4 Algorithm Structure design space

5 Supporting structures design space

6 Implementation mechanisms design space

7 Conclusions



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Parallel computing

The problem

Solve a problem using nw processing resources

Obtaining a (close to) nw speedup with respect to time
spent sequentially

s(n) =
Tseq

Tpar (n)
(speedup)

ε(n) =
Tid

Tpar (n)
=

Tseq

n × Tpar (n)
(efficiency)

s(n) =
1

f + 1−f
n

(Amdhal law)



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Parallel computing

The problem

Solve a problem using nw processing resources

Obtaining a (close to) nw speedup with respect to time
spent sequentially

s(n) =
Tseq

Tpar (n)
(speedup)

ε(n) =
Tid

Tpar (n)
=

Tseq

n × Tpar (n)
(efficiency)

s(n) =
1

f + 1−f
n

(Amdhal law)



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

The problems

Find potentially concurrent activities

alternative decompositions

with possibly radically differences

Parallelism exploitation

program activities (threads, processes)

program interactions (communications, sycnhronizations)

→ overhead



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

The problems

Find potentially concurrent activities

alternative decompositions

with possibly radically differences

Parallelism exploitation

program activities (threads, processes)

program interactions (communications, sycnhronizations)

→ overhead



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Structured parallel programming

Algorithmic skeletons

Cole 1988 → common, parametric, reusable parallelism
exploitation pattern
languages & libraries since ’90 (P3L, Skil, eSkel, ASSIST,
Muesli, SkeTo, Mallba, Muskel, Skipper, BS, ...)
high level parallel abstractions (parallel programming
community)

hiding most of the technicalities related to parallelism
exploitation
directly exposed to application programmers

Parallel design patterns

Massingill, Mattson, Sanders 2000 → “Patterns for parallel
programming” book (2006) (software engineering community)
design patterns à la Gamma book

name, problem, solution, use cases, etc.

concurrency, algorithms, implementation, mechanisms



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Structured parallel programming

Algorithmic skeletons

Cole 1988 → common, parametric, reusable parallelism
exploitation pattern
languages & libraries since ’90 (P3L, Skil, eSkel, ASSIST,
Muesli, SkeTo, Mallba, Muskel, Skipper, BS, ...)
high level parallel abstractions (parallel programming
community)

hiding most of the technicalities related to parallelism
exploitation
directly exposed to application programmers

Parallel design patterns

Massingill, Mattson, Sanders 2000 → “Patterns for parallel
programming” book (2006) (software engineering community)
design patterns à la Gamma book

name, problem, solution, use cases, etc.

concurrency, algorithms, implementation, mechanisms



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Structured parallel programming

Algorithmic skeletons

Cole 1988 → common, parametric, reusable parallelism
exploitation pattern
languages & libraries since ’90 (P3L, Skil, eSkel, ASSIST,
Muesli, SkeTo, Mallba, Muskel, Skipper, BS, ...)
high level parallel abstractions (parallel programming
community)

hiding most of the technicalities related to parallelism
exploitation
directly exposed to application programmers

Parallel design patterns

Massingill, Mattson, Sanders 2000 → “Patterns for parallel
programming” book (2006) (software engineering community)
design patterns à la Gamma book

name, problem, solution, use cases, etc.

concurrency, algorithms, implementation, mechanisms



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Concept evolution

Parallelism

parallelism exploitation patterns shared among applications

separation of concerns:

system programmers → efficient implementation of parallel
patterns
application programmers → application specific details

New architectures

Heterogeneous in Hw & Sw

Multicore NUMA, cache coherent architectures

Further non functional concerns

security, fault tolerance, power management, . . .



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Concept evolution

Parallelism

parallelism exploitation patterns shared among applications

separation of concerns:

system programmers → efficient implementation of parallel
patterns
application programmers → application specific details

New architectures

Heterogeneous in Hw & Sw

Multicore NUMA, cache coherent architectures

Further non functional concerns

security, fault tolerance, power management, . . .



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Concept evolution

Parallelism

parallelism exploitation patterns shared among applications

separation of concerns:

system programmers → efficient implementation of parallel
patterns
application programmers → application specific details

New architectures

Heterogeneous in Hw & Sw

Multicore NUMA, cache coherent architectures

Further non functional concerns

security, fault tolerance, power management, . . .



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Parallel design patterns

Researchers active since beginning of the century

S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and
K. Tan. 2002. From patterns to frameworks to parallel programs.
Parallel Comput. 28, 12 (December 2002), 1663-1683.

Berna L. Massingill, Timothy G. Mattson, Beverly A. Sanders: A
Pattern Language for Parallel Application Programs (Research Note).
Euro-Par 2000, LNCS, pp. 678-681, 2000

Berna L. Massingill, Timothy G. Mattson , Beverly A. Sanders,
Parallel programming with a pattern language, Springer Verlag, Int.
J. STTT 3:1-18, 2001

Berna L. Massingill, Timothy G. Mattson , Beverly A. Sanders,
Patterns for Finding Concurrency for Parallel Application Programs,
(pre-book)

Timothy G. Mattson, Beverly A. Sanders, Berna L. Massingill,
Patterns for parallel programming, Addison Wesley, Pearson
Education, 2005



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Parallel design patterns



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

The pattern framework

Four patter classes:

1 Finding concurrency

2 Algorithm structure

3 Supporting structure

4 Implementation mechanisms

These are “design spaces”

different concerns

different “kind of programmers” involved

upper layers → application programmers
lower layers → system programmers



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Finding concurrency design space

Three main blocks

1 Decomposition

→ Decomposition of problems into pieces that can be
computed concurrently

2 Dependency analysis

→ support task grouping and dependency analysis

3 Design evaluation

→ aimed at supporting evaluation of alternatives

Used in an iterative process:
design → evaluate → redesign → . . .



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Finding concurrency design space



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Decomposition patterns

Task decomposition

How can a problem be decomposed into tasks that can execute
concurrently ?

Data decomposition

How can a problem’s date be decomposed into units that can
be operated on relatively independently?

Forces:

Flexibility

Efficiency

Simplicity



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Dependency analysis patterns

Group tasks

How can the tasks make up a problem be grouped to simplify
the job of managing dependencies?

Order tasks

Given a way of decomposing a problem into tasks and a way of
collecting these tasks into logically related groups, how must
these groups of tasks be ordered to satisfy constrains among
tasks?

Data sharing

Given a data and task decomposition for a problem, how is
data shared among the tasks?



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Design evaluation pattern

Design evaluation pattern

Is the decomposition and dependency analysis so far good to
move on to the next design space, or should the design be
revisited?

Forces:

Suitability for the target platform (PE available, sharing
support, coordination of PE activities, overheads)

Design quality (flexibility, efficiency, simplicity)

Preparation for the next phase of the design (regularity of
the solution, synchronous/asynchronous interactions, task
grouping)



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Algorithm structure

Three main blocks

1 Organize by task

→ when execution by tasks is the best organizing principle

2 Organize by data decomposition

→ when main source of parallelisms is data

3 Organize by flow analysis

→ flow of data imposing ordering on (groups of) tasks



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Algorithm structure



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Organize by task

Task parallelism

When the problem is best decomposed into a collection of
tasks that can execute concurrently, how can this concurrency
be exploited efficiently?

→ dependency analysis, scheduling, ...

Divide & conquer

Suppose the problem is formulated using the sequential
divide&conquer strategy. How can the potential concurrency
be exploited?

→ dependency analysis, communication costs, ...



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Organize by data decomposition

Geometric decomposition

How can an algorithm be organized around a data structure
that has been decomposed into concurrently updatable
“chuncks”?

Recursive data

Suppose the problem involves an operation on a recursive data
structure (such as a list, tree or graph) that appears to require
sequential processing. How can operations on these data
structures be performed in parallel?



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Organize by flow of data

Pipeline

Suppose that the overall computation involves performing a
calculation on many sets of data, where the calculation can be
viewed in terms of data flowing through a sequence of stages.
How can potential concurrency be exploited ?

Event based coordination

Suppose th application can be decomposed into groups of
semi-independent tasks interacting in an irregular fashion. The
interaction is determined by the flow of data between them
which implies ordering constraints between the tasks. How can
these tasks and their interaction be implemented so they can
execute concurrently?



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Supporting structures

Two main blocks:

1 Program structures

→ approaches for structuring source code

2 Data structures

→ data dependency management

Forces:

Clarity of abstraction

Scalability

Efficiency

Maintainability

Environmental affinity

Sequential equivalence



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Supporting structures



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Program structures

SPMD (Single Program Multiple Data)

The interactions between the various UEs cause most of the
problems when writing correct and efficient parallel programs.
How can programmers structure their parallel programs to
make these interactions more manageable and easier to
integrate with the core computations?

Master/worker

How should a program be organized when the design is
dominated by the need to dynamically balance the work on a
set of tasks among the UEs?



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Program structures (2)

Loop parallelism

Given a serial program whose runtime is dominated by a set of
computationally intensive loops, how can it be translated into a
parallel program?

Fork/join

In some programs the number of concurrent tasks varies as the
program executes, and the way these tasks are related prevents
the use of simple control structures such as parallel loops. How
can a parallel program be constructed around such complicated
sets of dynamic tasks?



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Data Structures

Shared data

How toes one explicitly manage shared data inside a set of
concurrent tasks?

Shared queue

How can concurrenty-executing UEs safely share a queue data
structure?

Distributed array

Arrays often need to be partitioned between multiple UEs. How
can we do this so the resulting program is both readable and
efficient?



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Implementation mechanisms

Directly related to the target architecture:

1 to provide mechanisms suitable to create a set of
concurrent activities (UE Units of Execution)

→ threads, processes (creation, destruction)

2 to support interactions among the UEs

→ locks, mutexes, semaphores, memory fences, barriers,
monitors, ...

3 to support data exchange among the UEs

→ communication channels, queues, shared memory,
collective operations (broadcasts, multicast, barrier,
reduce) ...



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Implementation mechanisms



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Design patterns vs. algorithmic skeletons

Sw engineering vs. HPC community

SwEng Focus on efficiency of the programming process

HPC Focus on performance
(and programmer productivity)

Then:

Design patterns “recipes” to be implemented in order to
get a working program

Algorithmic skeletons predefined program constructs
(language constructs, classes, library entries)
implementing parallel patterns



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Design patterns vs. algorithmic skeletons

Sw engineering vs. HPC community

SwEng Focus on efficiency of the programming process

HPC Focus on performance
(and programmer productivity)

Then:

Design patterns “recipes” to be implemented in order to
get a working program

Algorithmic skeletons predefined program constructs
(language constructs, classes, library entries)
implementing parallel patterns



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Typical skeleton based program
development

1 Figure out which skeleton (composition) models your
problem

2 Instantiate skeletons

functional parameters (e.g. code, data types) & non
functional ones (e.g parallelism degree)

3 Fine tune program performance

parameter sweeping, bottleneck analysis or skeleton
restructuring

→ no parallel debugging, correctness guaranteed

→ no possibility to use parallel patterns not supported by
the skeleton set



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Typical algorithmic skeleton frameworks

Muesli (H. Kuchen, Munster Univ. D)

C++ class library

stream parallel skeletons

Pipeline, Farm, Branch&Bound, Divide&Conquer (Atomic,
Filter, Final, Initial)

data parallel skeletons

DistributedXXX (XXX ∈ { Array, Matrix, SparseMatrix})
+ fold, map, scan, zip

target architecture: C++ (MPI + OpenMP)

all communication, synchronization, shared access
problems solved in the skeleton implementation

program declaration separated from execution



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Parallel design patterns in perspective

Principles

Architecting parallel
software with design
patterns, not just parallel
programming languages

Split productivity and
efficiency layers, not just a
single general-purpose layer

Generating code with
search-based autotuners,
not compilers

Synthesis with sketching

Verification and testing, not
one or the other

...



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Parallel design patterns in perspective (2)

TBB (Thread Building Block library by Intel,2005)

C++ library

currently version 3.0 (since late 2010)

base building blocks for parallel programming with thread

parallel loop, reduce, pipeline
tasks
parallel containers
mutexes

since 3.0 → TBB Design patterns

Agglomeration, Elementwise, Odd-even communication,
Wavefront, Reduction, Divide&Conquer, GUI thread,
Non-preemptive priorities, Local serializer, Fenced data
transfer, Lazy initialization, Reference counting,
Compare-and-swap loop.



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Sample TBB pattern: D&C



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Sample TBB pattern: D&C

Example



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Sample APPL



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Sample APPL



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Sample APPL



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Conclusions

Become an expert in parallel computing

→ by studying and applying parallel design patterns !!!

You will need it

also to program iPhone applications!



Parallel design
patterns

M. Danelutto

Introduction

Parallel design
patterns

Finding
concurrency
design space

Algorithm
Structure
design space

Supporting
structures
design space

Implementation
mechanisms
design space

Conclusions

Conclusions

Become an expert in parallel computing

→ by studying and applying parallel design patterns !!!

You will need it

also to program iPhone applications!


	Introduction
	Parallel design patterns
	Finding concurrency design space
	Algorithm Structure design space
	Supporting structures design space
	Implementation mechanisms design space
	Conclusions

