Parallel design
patterns

Parallel design patterns

Marco Danelutto

Dept. of Computer Science, University of Pisa, Italy

May 2011, Pisa

Contents

Parallel design
patterns

Introduction

Introduction

]

Parallel design patterns

=

Finding concurrency design space

|

Algorithm Structure design space

&

Supporting structures design space

Implementation mechanisms design space

Conclusions

=

Parallel computing

Parallel design
patterns

M. Danelutto Tlle pI'Oblenl

m Solve a problem using n,, processing resources

Introduction

m Obtaining a (close to) n, speedup with respect to time
spent sequentially

Parallel computing

Parallel design
patterns

M. Danelutto Tlle pI'Oblenl

m Solve a problem using n,, processing resources

Introduction

m Obtaining a (close to) n, speedup with respect to time
spent sequentially

T
s(n) = 7 Se(q) (speedup)
par
T;d Tseq ..
= - fr
e(n) Tor(n) ~ 1% Tour () (efficiency)
1
s(n) = ——— (Amdhal law)

The problems

Parallel design
patterns

Introduction Find potentially concurrent activities
m alternative decompositions

m with possibly radically differences

The problems

Parallel design
patterns

M. Danelutto

Introduction Find potentially concurrent activities
m alternative decompositions

m with possibly radically differences

Parallelism exploitation
m program activities (threads, processes)
m program interactions (communications, sycnhronizations)

— overhead

Structured parallel programming

Parallel design
patterns

Introduction

Structured parallel programming

EEIEEEIN Algorithmic skeletons

HPDMW, m Cole 1988 — common, parametric, reusable parallelism
exploitation pattern

m languages & libraries since '90 (P3L, Skil, eSkel, ASSIST,
Muesli, SkeTo, Mallba, Muskel, Skipper, BS, ...)

m high level parallel abstractions (parallel programming
community)

Introduction

m hiding most of the technicalities related to parallelism
exploitation
m directly exposed to application programmers

Structured parallel programming

EEIEEEIN Algorithmic skeletons

HPDWWQ m Cole 1988 — common, parametric, reusable parallelism
exploitation pattern

m languages & libraries since '90 (P3L, Skil, eSkel, ASSIST,
Muesli, SkeTo, Mallba, Muskel, Skipper, BS, ...)

m high level parallel abstractions (parallel programming
community)

Introduction

m hiding most of the technicalities related to parallelism
exploitation
m directly exposed to application programmers

Parallel design patterns

m Massingill, Mattson, Sanders 2000 — “Patterns for parallel

programming” book (2006) (software engineering community)
m design patterns a la Gamma book

m name, problem, solution, use cases, etc.

m concurrency, algorithms, implementation, mechanisms

Concept evolution

Parallel design
patterns

M. Danelutto Para"elism

Introduction m parallelism exploitation patterns shared among applications
m separation of concerns:

m system programmers — efficient implementation of parallel
patterns
m application programmers — application specific details

Concept evolution

Parallel design
patterns

M. Danelutto Para"elism

Introduction m parallelism exploitation patterns shared among applications
m separation of concerns:

m system programmers — efficient implementation of parallel
patterns
m application programmers — application specific details

New architectures
m Heterogeneous in Hw & Sw
m Multicore NUMA, cache coherent architectures

Concept evolution

Parallel design
patterns

M. Danelutto Parallelism

Introduction m parallelism exploitation patterns shared among applications
m separation of concerns:

m system programmers — efficient implementation of parallel
patterns
m application programmers — application specific details

New architectures

m Heterogeneous in Hw & Sw

m Multicore NUMA, cache coherent architectures
Further non functional concerns

m security, fault tolerance, power management, ...

Parallel design patterns

Parallel design

patterns Researchers active since beginning of the century

M. Danelutto

m S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and
K. Tan. 2002. From patterns to frameworks to parallel programs.
Parallel Comput. 28, 12 (December 2002), 1663-1683.

m Berna L. Massingill, Timothy G. Mattson, Beverly A. Sanders: A
Pattern Language for Parallel Application Programs (Research Note).
Euro-Par 2000, LNCS, pp. 678-681, 2000

m Berna L. Massingill, Timothy G. Mattson , Beverly A. Sanders,
Parallel programming with a pattern language, Springer Verlag, Int.
J.STTT 3:1-18, 2001

m Berna L. Massingill, Timothy G. Mattson , Beverly A. Sanders,
Patterns for Finding Concurrency for Parallel Application Programs,
(pre-book)

m Timothy G. Mattson, Beverly A. Sanders, Berna L. Massingill,
Patterns for parallel programming, Addison Wesley, Pearson
Education, 2005

Parallel design
patterns

Parallel design patterns

Parallel design
patterns

ry
Lad

PATTERNS
et FOR PARALLEL
PROGRAMMING

The pattern framework

Parallel design
patterns

M. Danelutto

Four patter classes:

Finding concurrency

Parallel design
patterns

Algorithm structure
Supporting structure

Implementation mechanisms

These are “design spaces”
m different concerns

m different “kind of programmers” involved

m upper layers — application programmers
m lower layers — system programmers

Finding concurrency design space

Parallel design
patterns

M. Danelutto

Three main blocks
Decomposition

— Decomposition of problems into pieces that can be
Finding computed concurrently

concurrency
design space

Dependency analysis

— support task grouping and dependency analysis
Design evaluation

— aimed at supporting evaluation of alternatives

Used in an iterative process:
design — evaluate — redesign — ...

Parallel design
patterns

M. Danelutto

Finding Concurrency

Decomposition

!
i Task Decomposition

Finding
concurrency
design space

J Data Decomposition |

I Algorithm Structurej

l Supporting Structures]

l Implementation Mechanisms]

Figure 3.1: Overview of the Finding Concurrency design space and its place in the pattern language

Decomposition patterns

Parallel design
patterns

v banenieo @ Task decomposition
How can a problem be decomposed into tasks that can execute
concurrently ?

Finding
concurrency
design space

Data decomposition

How can a problem's date be decomposed into units that can
be operated on relatively independently?

Forces:
m Flexibility
m Efficiency

m Simplicity

Dependency analysis patterns

Parallel design
patterns

Group tasks

M. Danelutto

How can the tasks make up a problem be grouped to simplify
the job of managing dependencies?

Finding
concurrency
design space

Order tasks

Given a way of decomposing a problem into tasks and a way of
collecting these tasks into logically related groups, how must
these groups of tasks be ordered to satisfy constrains among
tasks?

Data sharing

Given a data and task decomposition for a problem, how is
data shared among the tasks?

Design evaluation pattern

Parallel design
patterns

M. Danelutto

Design evaluation pattern

Is the decomposition and dependency analysis so far good to
move on to the next design space, or should the design be
revisited?

Finding

concurrency
design space

Forces:

m Suitability for the target platform (PE available, sharing
support, coordination of PE activities, overheads)

m Design quality (flexibility, efficiency, simplicity)
m Preparation for the next phase of the design (regularity of
the solution, synchronous/asynchronous interactions, task

grouping)

Algorithm structure

Parallel design
patterns

M. Danelutto

Three main blocks
Organize by task
— when execution by tasks is the best organizing principle

Algorithm Organize by data decomposition

Structure

design space — when main source of parallelisms is data
Organize by flow analysis
— flow of data imposing ordering on (groups of) tasks

Algorithm structure

Parallel design
patterns

M. Danelutto

Finding Concurrency

Algorithm Structure
; [Task Parallelism |3 ; | Geometric Decomposition | i il Pipeline jg
étlgoritthm ! [Divide and Conguer | ' H Recursive Data | ¢ i [Event-Based Coordination |}
ructure p ¥ 1% 1
design space Tremssmssssossmonmsemes Ressessommiosumenmoomoommimocer mmmmmmmmmmmmmmmmmmmmmmmees

r Supporting Structures J

L}'mptemenmzion Mechanisma

Figure 4.1: Overview of the Algorithm Structure design space and its place in the pattern language

Organize by task

Parallel design
patterns

M. Danelutto Task parallelism

When the problem is best decomposed into a collection of
tasks that can execute concurrently, how can this concurrency
be exploited efficiently?

— dependency analysis, scheduling, ...

Algorithm
Structure
design space

Divide & conquer

Suppose the problem is formulated using the sequential
divide&conquer strategy. How can the potential concurrency
be exploited?

— dependency analysis, communication costs, ...

Organize by data decomposition

Parallel design
patterns

M. Danelutto

Geometric decomposition

How can an algorithm be organized around a data structure
that has been decomposed into concurrently updatable
“chuncks"?

Algorithm
Structure
design space

Recursive data

Suppose the problem involves an operation on a recursive data
structure (such as a list, tree or graph) that appears to require
sequential processing. How can operations on these data
structures be performed in parallel?

Organize by flow of data

Parallel design
patterns

Pipeline

M. Danelutto

Suppose that the overall computation involves performing a
calculation on many sets of data, where the calculation can be
viewed in terms of data flowing through a sequence of stages.
How can potential concurrency be exploited ?

Algorithm
Structure
design space

Event based coordination

Suppose th application can be decomposed into groups of
semi-independent tasks interacting in an irregular fashion. The
interaction is determined by the flow of data between them
which implies ordering constraints between the tasks. How can
these tasks and their interaction be implemented so they can
execute concurrently?

Supporting structures

Parallel design
patterns Two main blocks:

M. Danelutto

Program structures
— approaches for structuring source code
Data structures

— data dependency management

Forces:

m Clarity of abstraction
Sl m Scalability
strLfctures
g e m Efficiency

m Maintainability

m Environmental affinity

m Sequential equivalence

“@89: Supporting structures

REN

Parallel design
patterns

Finding Concurrency J

[

[Aigorithm Structure |

Supporting Structures

| SharedData |}

[semp |
ﬁhm Qucue l

liMaster.f Worker J
Llioop Parallelism —l Distn'buled Array]

Supporting
structures
design space

I Implementation Mechanisms l

Figure 5.1: Overview of the Supporting Structures design space and its place in the
pattern language

Program structures

Parallel design
patterns

M. Danelutto

SPMD (Single Program Multiple Data)

The interactions between the various UEs cause most of the
problems when writing correct and efficient parallel programs.
How can programmers structure their parallel programs to
make these interactions more manageable and easier to
integrate with the core computations?

Supporting
structures

Master /worker

design space

How should a program be organized when the design is
dominated by the need to dynamically balance the work on a
set of tasks among the UEs?

Program structures (2)

Parallel design
patterns

M. Danelutto

Loop parallelism

Given a serial program whose runtime is dominated by a set of
computationally intensive loops, how can it be translated into a
parallel program?

Fork/join

In some programs the number of concurrent tasks varies as the
Supporti
atructures program executes, and the way these tasks are related prevents

design space

the use of simple control structures such as parallel loops. How
can a parallel program be constructed around such complicated
sets of dynamic tasks?

Data Structures

Parallel design
patterns

M. Danelutto Shared data
How toes one explicitly manage shared data inside a set of
concurrent tasks?

Shared queue

How can concurrenty-executing UEs safely share a queue data
structure?

Supporting
structures

Distributed array

design space

Arrays often need to be partitioned between multiple UEs. How
can we do this so the resulting program is both readable and
efficient?

Implementation mechanisms

Parallel design
patterns

RREEE Directly related to the target architecture:

to provide mechanisms suitable to create a set of
concurrent activities (UE Units of Execution)

— threads, processes (creation, destruction)
to support interactions among the UEs

— locks, mutexes, semaphores, memory fences, barriers,
monitors, ...

to support data exchange among the UEs

Implementation — communication channels, queues, shared memory,

mechanisms

design space collective operations (broadcasts, multicast, barrier,
reduce) ...

Implementation mechanisms

Parallel design
patterns

l Finding Concurrency J

L Algorithm Structure]

I Supporting Structu ﬁes_j

Implementation Mechanisms

Figure 6.1: Overview of the /mplementation Mechanisms design space and its place in the
pattern language

Implementation
mechanisms
design space

Design patterns vs. algorithmic skeletons

Parallel design
patterns

Sw engineering vs. HPC community
SwEng Focus on efficiency of the programming process

HPC Focus on performance
(and programmer productivity)

Conclusions

Design patterns vs. algorithmic skeletons

Parallel design
patterns

M. Danelutto

Sw engineering vs. HPC community
SwEng Focus on efficiency of the programming process

HPC Focus on performance
(and programmer productivity)

Then:
Design patterns “recipes” to be implemented in order to
get a working program

Algorithmic skeletons predefined program constructs
(language constructs, classes, library entries)
implementing parallel patterns

Conclusions

Typical skeleton based program
development

Parallel design
patterns

M. Danelutto

Figure out which skeleton (composition) models your
problem
Instantiate skeletons

m functional parameters (e.g. code, data types) & non
functional ones (e.g parallelism degree)

Fine tune program performance
m parameter sweeping, bottleneck analysis or skeleton
restructuring
— no parallel debugging, correctness guaranteed

— no possibility to use parallel patterns not supported by
the skeleton set

Conclusions

Typical algorithmic skeleton frameworks

Parallel design
patterns

s Muesli (H. Kuchen, Munster Univ. D)

m C++ class library
m stream parallel skeletons

m Pipeline, Farm, Branch&Bound, Divide&Conquer (Atomic,
Filter, Final, Initial)

data parallel skeletons
m DistributedXXX (XXX € { Array, Matrix, SparseMatrix})
+ fold, map, scan, zip
target architecture: C++ (MPI + OpenMP)
all communication, synchronization, shared access
problems solved in the skeleton implementation

Conclusions

program declaration separated from execution

Parallel design
patterns

M. Danelutto

Conclusions

0ok10.1148/1562766 1662 783

Writing programs that scale with increasing
numbers of cores should be as easy as writing
programs for sequential computers.

BY KRSTE ASANOVIC, RASTISLAV BODIK, JAMES DEMMEL,
TONY KEAVENY, KURT KEUTZER, JOHN KUBIATOWICZ,

NELSON MORGAN, DAVID PATTERSON, KOUSHIK SEN,
JOHN WAWRZYNEK, DAVID WESSEL, AND KATHERINE YELICK

A View of
the Parallel
Computing
Landscape

INDUSTRY NEEDS HELP from the research community
to succeed in its recent dramatic shift to parallel
computing. Failure could jeopardize both the
ITindustry and the portions of the economy

that depend on rapidly improving information
technology. Here, we review the issues and, asan
scribe an integrated approach we're
developing at the Parallel Computing Laboratory, or
Par Lab, to tackle the parallel challenge.

Parallel design patterns in perspective

Principles

Architecting parallel
software with design
patterns, not just parallel
programming languages
Split productivity and
efficiency layers, not just a
single general-purpose layer

Generating code with
search-based autotuners,
not compilers

Synthesis with sketching

Verification and testing, not
one or the other

Parallel design patterns in perspective (2)

Parallel design
patterns

TBB (Thread Building Block library by Intel,2005)
m C++ library

m currently version 3.0 (since late 2010)

M. Danelutto

m base building blocks for parallel programming with thread
m parallel loop, reduce, pipeline
m tasks
m parallel containers
H mutexes
m since 3.0 — TBB Design patterns
m Agglomeration, Elementwise, Odd-even communication,
Wavefront, Reduction, Divide&Conquer, GUI thread,
Non-preemptive priorities, Local serializer, Fenced data
Conclusions transfer, Lazy initialization, Reference counting,
Compare-and-swap loop.

Sample TBB pattern: D&C

Parallel design
patterns Intel® Threading Building Blocks Design Patterns

Divide and Conquer

Praoblem
Parallelize a divide and conquer algorithm.

Context
Divide and conquer is widely used in serial algorithms. Common examples are
quicksort and mergesort.

Forces
* Problem can be transformed into subproblems that can be solved independent|y.
» Splitting problem or merging solutions is relatively cheap compared to cost of

solving the subproblems
Solution

There are several ways to implement divide and conquer in IntelaThreading Building
Blocks (Intel® TBEB). The best choice depends upon drcumstances.

Conclusions

+ If division always yields the same number of subproblems, use recursion and
tbb::parallel invoke.

I the number of subproblems varies, use recursion and thb: :task_group.

« If ultimate efficiency and scalability is important, use tbb: : task and continuation
saseing ctvle

Sample TBB pattern:

Parallel design
patterns

M. Danelutto

The number of subsorts is fixed at two, so thb: :parallel_invoke provides a simple
way to parallelize it. The parallel code is shown below:
void ParallelQuicksort(T* begin, T* end) {
if(end-begin>1) {

using namespace std;

T* mid = partition(begin+1, end, bind2nd(less<T>(), *begin));

swap(*begin, mid[-1]);

tbb: :parallel_invoke([=]{ParallelQuicksort(begin, mid-1);},

[=]1{ParallelQuicksort(mid, end);3});

Conclusions

Sample APPL

Parallel design
patterns

Stream of images, available at different times

The problem | truecolor (nermalize colors)
L~ {__Each to be filtered with 2 different fiters ,————————————————

{__sharpening

Algorithm structure
-

Supporting structures
.

_Implementation mechanisms__
_Implementation mechanisms

Conclusions

Sample APPL

Parallel design
patterns

The problem
—he problem

Task decomposition: each input image is an independent task

| _independertly

" Data decomposition: each image decomposed in sub images: each sub image processed

|/ Task ordering: results shoul respect the input task ordering

Design evaluation
_Design evaluation

Finding concurrency) suitable to target different architectures

| configurable parallelism degrees
o PR SRS data parallelism (per task)

task parallelism

Design quality: structured
_Preparation for the next phase: regular decomposition,

< Processing a stream of images >

task parallelism

each image) -

organize by task (

g each image as an independent task

Geometric

ion

"\ Algorithm structure | Organize by data

_supporting structures

_Implementation mechanisms
_Implementation mechanisms

Conclusions

organize by flow of data

{_p parts of image in parallel
filter (true color)
Pipeline ,— —
— PSR fiter (sharpening)

Parallel design
patterns

The problem
_The problem
Finding concurrency
—NENG CONCUTTENTY ,,

Algorithm structure
e]

to implement task parallelism

Mastermorker

/ each worker is processing a single image
Program structures
—Frogram structures

to implement each worker

Supporting structures SPMD

{__alternatively : loop parallelism

Shared queue to support stream of images

Data structures

Distributed array __te support SPMD single image computation

rocessing a stream of images

UE management __ threads

lock

Multicore __ Sycnhronization

— {__mutexes

| _Communications _ through shared memory
Implementation mechanisms |

UE management __processes

distributed lock structures

nchronization

COow/NOW
L {__socket messages

__communication Sockets

Conclusions

Conclusions

Parallel design
patterns

M. Danelutto

Become an expert in parallel computing

— by studying and applying parallel design patterns !!!

Conclusions

Conclusions

Parallel design
patterns

M. Danelutto

Become an expert in parallel computing

— by studying and applying parallel design patterns !!!
You will need it
also to program iPhone applications!

Conclusions

	Introduction
	Parallel design patterns
	Finding concurrency design space
	Algorithm Structure design space
	Supporting structures design space
	Implementation mechanisms design space
	Conclusions

