
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

SPM lecture, December 2016

 2

Debugging Tools
● Many debugging tools available (open source and not)

● For Linux OS, the de-facto standard tool is gdb

● Debugging programs with multiple threads is not easy

– https://sourceware.org/gdb/onlinedocs/gdb/Threads.html

– Take a look at least to the following commands:

● info threads
● thread threadno
● bt (backtrace)

● valgrind (http://www.valgrind.org/)

– very useful to find memory leaks

– take a look at the Helgrind tool and the DRD tool

– valgrind --tool=helgrind/drd

 3

Profiling Tools
● Many tools available (open source and not)

● oprofile (http://oprofile.sourceforge.net/doc/)

– very powerful open-source system profiler

● valgrind + cachegrind

– valgrind --tool=cachegrind

● PAPI (http://icl.cs.utk.edu/papi/)

– very useful if you have to profile a specific piece of code

● Intel vtune amplifier

– Tutorials available here:

https://software.intel.com/en-us/articles/intel-vtune-amplifier-tutorials

 4

FastFlow memory allocator

● The standard allocator is not very efficient when allocating small memory areas

● FastFlow provides a memory allocator for this cases

– …. but the interface is not equal to the standard one

– allocates large chunk of memory slicing them into smaller chunks

● The allocator has been optimized for the patterns

● 1-to-1 1 thread executing malloc 1 thread executing free

● 1-to-N 1 thread executing malloc N threads executing free

malloc

malloc free

free

free

free

 5

FastFlow memory allocator

● 2 different interfaces: (see <fastflow-home>/ff/allocator.hpp file)

– ff_allocator: can be used only for the patterns described before (only one
specific thread can call malloc)

● The thread calling malloc has to register himself as an allocating thread and has to
initialize the allocator.

– FFAllocator: can be used by any threads regardless they are allocating or
deallocating memory areas

● Take a look at the code contained in the public/Allocator folder of the course
machine

– alloc_std.cpp and alloc_ff.cpp

 6

General Purpose Efficient Allocators

● Hoard allocator (http://www.hoard.org/)

● Intel TBB allocator (Intel web site, provided with the TBB framework)

● Jemalloc allocator (http://jemalloc.net/)

● All of them can be used as drop-in replacement of the standard libc allocator by
setting LD_PRELOAD env variable

● For example:

export LD_PRELOAD="${JEMALLOC_HOME}/lib/libjemalloc.so.2"

or simply

LD_PRELOAD="${JEMALLOC_HOME}/lib/libjemalloc.so.2" your-app

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

