
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

SPM lecture, November 2016

 2

FastFlow farm

● Let's consider again the ClassWork1: pipe(seq, seq, seq)

● 3-stage pipeline: pipe(seq, farm, seq)

5, 4, 3, 2, 1, 0

25, 16, 9, 4, 1, 0

farm

first default
Emitter

default
Collector

● Default task scheduling is (pseudo) round-robin
● The task collection in the Collector thread is “from any” (input non-determinism)

● See the farm_square1.cpp file in the ClassWork2 folder

third

second

5, 4, 3, 2, 1, 0 25, 16, 9, 4, 1, 0

first second third

 3

ClassWork2: comments

● 3-stage pipeline: pipe(seq, farm, seq)

● The farm does not have the collector node

● The third stage of the pipeline is a multi-input node (ff_minode_t)

5, 4, 3, 2, 1, 0

25, 16, 9, 4, 1, 0

Multiple input node

● The Collector can be removed using:
– myFarm.remove_collector();
– If the next stage after the farm is a sequential node, it must be defined as
– ff_minode_t (multi-input node)

● See the farm_square2.cpp file in the ClassWork2 folder

farm

 4

FastFlow farm (classWork2 comments)

● single farm with specialized Emitter and Collector: farm(seq, nw)

● The farm collector by default acts as a multi input node
● The farm emitter by default acts as a multi output node

● See the farm_square3.cpp file in the ClassWork2 folder

5, 4, 3, 2, 1, 0
25, 16, 9, 4, 1, 0

farm

Emitter
(first)

Collector
(third)

second

 5

Ordered farm ff_ofarm
● Provides a total ordering between input and output

– use case example: video streaming

● Limitations:

– The number of tasks produced in output by the workers must be exactly the same of the
number of tasks received in input

– It is not possible to define your own scheduling and gathering policies

● If you don't need a strict input/output ordering then it is generally better to implement your
own policy by re-defining the Emitter and the Collector

● Considering again the ClassWork2, try to replace the ff_Farm with the ff_OFarm in all
examples (pay attention to the ff_OFarm class interface for the farm_square3.cpp version)

 6

More on the ff_farm
● Auto-scheduling:

– myFarm.set_scheduling_ondemand(<optional-value>)

● Possibility to implement user's specific scheduling strategies (ff_send_out_to)

– ff_send_out_to.cpp example in the tutorial tests

● Master-Worker computation:

– farm without the collector node

– Workers send the results back to the Emitter

● Let's see the feedback.cpp example in the tutorial tests

– The termination protocol is a bit more complex (you need to use eosnotify)
master-worker skeleton

Master

Worker

farm
pipeline

 7

FastFlow farm (again classWork2)

● Master-worker version:

● See the farm_square4.cpp file in the ClassWork2 folder

farm

Emitter
(first and

third)

second

5, 2, 1

1, 4, 25

 8

Introduction to Class Work 3: using
ff_Pipe and ff_Farm

● Simple file compressor using miniz.c:

– The sequential implementation of the compressor is given (simplecomp.cpp) together
with an utility program for decompressing the files (compdecomp.cpp).

– The task is to modify the sequential code and implement a 3-stage pipeline version in
which the first stage reads from the command line a list of files to compress, the
second stage compresses each input file in memory and finally the third stage writes
the compressed memory file into the disk (in a separate folder).

● icc simplecomp.cpp -o simplecomp
● To decompress a file use the compdecomp program (first you have to compile the

compdecomp.cpp file):

– ./compdecomp d <compressed-file>
– Then implement the second stage by using an ff_Farm

– All files needed are in the ~spm1501/public/ClassWork3 folder of the course
machine

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8

