Introduction to FastFlow programming

SPM lecture, November 2016

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

FastFlow farm

e Let's consider again the ClassWork1: pipe(seq, seq, seq)

' 5,4,3,2,1,0 >‘25,16,9,4,1,0 '
>

first second third

e 3-stage pipeline: pipe(seq, farm, seq)

/ second \

third

@

25,16,9,4,1,0

‘ 5,4,3,2,1,0

first

default
Collector

default
Emitter

o farm

* Default task scheduling is (pseudo) round-robin
» The task collection in the Collector thread is “from any” (input non-determinism)

e See the farm_squarel.cpp file in the ClassWork?2 folder

e 3-stage pipeline: pipe(seq, farm, seq)

 The farm does not have the collector node

ClassWork2: comments

e The third stage of the pipeline 1s a multi-input node (ff minode t)

-~

‘ 5,4,3,2,1,0

\farm

~

®
4

e The Collector can be removed using:
- myFarm.remove collector();
— If the next stage after the farm is a sequential node, it must be defined as
— ff minode t (multi-input node)

25,16,9,4,1,0
/l\/l:ltiple input node

e See the farm_square2.cpp file in the ClassWork?2 folder

FastFlow farm (classWork2 comments)

e single farm with specialized Emitter and Collector: farm(seq, nw)

54,3210 N
N& 4.1,0

Collector
(third)

farm / |

Emitter
(first)

e The farm collector by default acts as a multi input node
e The farm emitter by default acts as a multi output node

* See the farm square3.cpp file in the ClassWork?2 folder

Ordered farm ff ofarm

* Provides a total ordering between input and output

— use case example: video streaming

 Limitations:

— The number of tasks produced in output by the workers must be exactly the same of the
number of tasks received in input

— It 1s not possible to define your own scheduling and gathering policies

e Ifyou don't need a strict input/output ordering then it is generally better to implement your
own policy by re-defining the Emitter and the Collector

e Considering again the ClassWork?2, try to replace the ff Farm with the ff OFarm in all
examples (pay attention to the ff OFarm class interface for the farm square3.cpp version)

More on the ff farm

e Auto-scheduling:

- myFarm.set scheduling ondemand(<optional-value>)

e Possibility to implement user's specific scheduling strategies (ff send out to)

- [f send out to.cpp example in the tutorial tests

e Master-Worker computation:

— farm without the collector node

- Workers send the results back to the Emitter Worker

Master

e Let's see the feedback.cpp example in the tutorial tests

— The termination protocol is a bit more complex (you need to use eosnotify)

) master-worker skeleton
4 s A\

F

\\pipeline \Jarm //’

I FastFlow farm (again classWork?2)

e Master-worker version:

~

second

Emitter
(first and
third)

farm /

e Sece the farm_square4.cpp file in the ClassWork?2 folder

Introduction to Class Work 3: using
ff Pipe and ff Farm

* Simple file compressor using miniz.c:

— The sequential implementation of the compressor is given (simplecomp.cpp) together
with an utility program for decompressing the files (compdecomp.cpp).

— The task 1s to modify the sequential code and implement a 3-stage pipeline version in
which the first stage reads from the command line a list of files to compress, the
second stage compresses each input file in memory and finally the third stage writes
the compressed memory file into the disk (in a separate folder).

e 1icc simplecomp.cpp -0 simplecomp

e To decompress a file use the compdecomp program (first you have to compile the
compdecomp.cpp file):

— ./compdecomp d <compressed-file>
— Then implement the second stage by using an ff Farm

— All files needed are in the ~spm1501/public/ClassWork3 folder of the course
machine

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8

