
Introduction to FastFlow programming

Massimo Torquati <torquati@di.unipi.it>

Computer Science Department, University of Pisa - Italy

SPM lecture, November 2016

 2

Data Parallel Computations
● In data parallel computations, large data structures are partitioned among the number of

concurrent resources each one computing the same function (F) on the assigned partition

● Input data may come from an input stream

● Typically the function F may be computed independently on each partition

– There can be dependencies as in stencil computations

● Goal: reduce the completion time for computing the input task

● Patterns:

– map, reduce, stencil, scan,… typically they are encountered in sequential program as loop-
based computations

● In FastFlow we decided to implement a sort of building-block for data-parallel
computations that is the ParallelFor/ParallelForReduce

 3

FastFlow ParallelFor
● The ParallelFor patterns can be used to parallelize loops with independent iterations

● The class interface is defined in the file parallel_for.hpp

● Example:

● Constructor interface (all parameters have a default value):

– ParallelFor(maxnworkers, spinWait, spinBarrier)

● parallel_for interface (on the base of the number and type of bodyF arguments you have
different parallel_for methods):

– parallel_for(first, last, step, chunk, bodyF, nworkers)

– bodyF is a C++ lambda-function

// A and B are 2 arrays of size N

for(long i=0; i<N; ++i)
 A[i] = A[i] + B[i];

#include <ff/parallel_for.hpp>
using namespace ff;

ParallelFor pf; // defining the object

pf.parallel_for(0, N, 1, [&A,B](const long i) {
 A[i] = A[i] + B[i];
});

 4

● The ParallelForReduce patterns can be used to parallelize loops with independent
iterations having reduction variables (map+reduce)

● Example:

● The constructor interface is the same of the ParallelFor (but the template type)

● parallel_reduce method interface

– parallel_reduce(var, identity-val, first, last, step, chunk, mapF, reduceF, nworkers)

– mapF and reduceF are C++ lambda-functions

// A is an array of long of size N
long sum = 0;
for(long i=0; i<N; ++i)
 sum += A[i];

#include <ff/parallel_for.hpp>
using namespace ff;

ParallelForReduce<long> pfr;
long sum=0;
pfr.parallel_reduce(sum, 0,
 0,N,1, [&](const long i, long &mysum) {
 mysum += A[i];
 },
 [](long &s, const long e) { s += e;}
);

FastFlow ParallelForReduce

 5

Iterations scheduling

● Suppose the following case:

● We have a computation on an array A of size N.

– for(size_t i=0;i<N;++i) A[i]=F(A[i]); // map like computation

● You know that the time difference for computing different elements of the
array A may be large.

● Problem: how to schedule loop iterations ?

 6

Iterations scheduling: example

 7

Iterations scheduling in the
ParallelFor* patterns

● Iterations are scheduled according to the value of the “chunk” parameter
 parallel_for(start, stop, step, chunk, body-function);

● Three options:

– chunk = 0 : static scheduling, at each worker thread is given a contiguous
chunk of ~(#iteration-space/#workers) iterations

– chunk > 0: dynamic scheduling with task granularity equal to the chunk value

– chunk < 0: static scheduling with task granularity equal to the chunk value,
chunks are assigned to workers in a round-robin fashion

 8

ParallelForReduce example

● Dot product (or scalar product or inner product), takes to vectors (A,B) of the same
length, it produces in output a single element computed as the sum of the products
of the corresponding elements of the two vectors. Example:

● Let's comment the FastFlow parallel implementation in the tutorial folder

<fastflow-dir>/tutorial/fftutorial_source_code/examples/dotprod/dotprod.cpp

long s=0;
for(long i=0; i<N; ++i) s += A[i] * B[i];

 9

Mandelbrot set example
● Very simple data-parallel computation

– Each pixel can be computed independently

– Simple ParallelFor implementation

● Black-pixel requires much more computation

● A naïve partitioning of the images quickly

leads to load unbalanced computation and poor performance

– Let's consider as the minimum computation unit a single image row

(image size 2048x2048, max 103 iterations per point)

● ParallelFor Static partitioning of rows (48 threads) chunk=0 MaxSpedup ~14
● ParallelFor Dynamic partitioning of rows (48 threads) chunk=1 MaxSpeedup ~37

– <fastflow-dir>/tutorial/fftutorial_source_code/example/mandelbrot_dp/mandel.cpp

 10

Combining Data Parallel and Stream
Parallel Computations

● It is possible to nest data-parallel patterns inside a pipeline and/or a task-farm pattern

● We have mainly two options:

– To use a ParallelFor* pattern inside the svc method of a FastFlow node

– By defining a node as an ff_Map node

 11

The ff_Map pattern
● The ff_Map pattern is just a ff_node_t that wraps a ParallelForReduce pattern

 ff_Map< Input_t, Output_t, reduce-var-type>

● Inside pipelines and farms, it is generally most efficient to use the ff_Map than a plain
ParallelFor because more optimizations may be introduced by the run-time (mapping of
threads, disabling/enabling scheduler thread, etc...)

● Usage example:
#include <ff/map.hpp>
using namespace ff;

struct myMap: ff_Map<Task,Task,float> {
 using map = ff_Map<Task,Task,float>;

 Task *svc(Task *input) {

 map::parallel_for(....);

 float sum = 0;
 map::parallel_reduce(sum, 0.0, ….);

 return out;
 }
};

 12

Mandelbrot set

● Suppose we want to compute a number of Mandelbrot images (for example
varying the computing threshold per point)

● We have basically two options:

1. One single parallel-for inside a sequential for iterating over all different threshold
points

2. A task-farm with map workers implementing
two different scheduling strategies

● Which one is better having limited resources ?

– Depends on many factors, too difficult to say in advance

for_each threshold values
 parallel_for (Mandel(threshold));

......

Moving quickly between the two solutions
is the key point

 13

ff_Map example

● Let's have a look at the simple test case in the FastFlow tutorial

<fastflow-dir>/tutorial/fftutorial_source_code/tests/hello_map.cpp

 14

Parallel Pipeline + Data Parallel :
Sobel filter

struct sobelStage: ff_Map<Task> {
 sobelStage(int mapwks):
 ff_Map<Task>(mapwrks, true) {};

 Task *svc(Task*task) {
 Mat src = *task->src, dst= *task->dst;
 ff_Map<>::parallel_for(1,src,src.row-1,
 [src,&dst](const long y) {
 for(long x=1;x<src.cols-1;++x) {
 …...
 dst.at<x,y> = sum;
 }
 });
 const std::string outfile=“./out“+task->name;
 imwrite(outfile, dst);
 }

● The first stage reads a number of images
from disk one by one, converts the images
in B&W and produces a stream of images
for the second stage

● The second stage applies the Sobel filter to
each input image and then writes the output
image into a separate disk directory

 15

Parallel Pipeline + Data Parallel :
Sobel filter

- 2 Intel Xeon CPUs E5-2695
v2 @ 2.40GHz (12x2 cores)

- 320 images of different size
(from few kilos to some MB)

- sobel (seq): ~ 1m

- pipe+map (4): ~15s

- farm+map (8,4): ~5s
- farm+map (32,1): ~3s

● We can use a task-farm of ff_Map workers

● The scheduler (Sched) schedules just file
names to workers using an on-demand
policy

● We have two level of parallelism: the
number of farm workers and the number of
map workers

 16

Two stage image restoration

● Detect: adaptive median filter, produces a noise map

● Denoise: variational Restoration (iterative optimization algorithm)

– 9-point stencil computation

● High-quality edge preserving filtering

● Higher computational costs w.r.t. other edge preserving filters

– without parallelization, no practical use of this technique because too costly

● The 2 phases can be pipelined for video streaming

M. Aldinucci, C. Spampinato, M. Drocco, M. Torquati and S. Palazzo “A parallel edge preserving
algorithm for salt and pepper image denoising” IPTA 2012 conference, 2012

 17

Two stage image restoration: Salt & Pepper
image

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

