Erlang as a framework for
parallel /distributed
programming.

Erlang as a framework for
parallel /distributed programming.

M. Stronati

Marco Stronati
marco.stronati@gmail.com

2010

FRI ANG

» personal inclination towards functional programming (strong
typed!)

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Introduction

» personal inclination towards functional programming (strong
typed!)

» much work on haskell concurrency/parallelism (way too
much material) but no distribution

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Introduction

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Introduction

personal inclination towards functional programming (strong
typed!)

much work on haskell concurrency/parallelism (way too
much material) but no distribution

Erlang...

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Introduction

personal inclination towards functional programming (strong
typed!)

much work on haskell concurrency/parallelism (way too
much material) but no distribution

Erlang... | think | found something...

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Introduction

personal inclination towards functional programming (strong
typed!)

much work on haskell concurrency/parallelism (way too
much material) but no distribution

Erlang... | think | found something...
Talk is cheap. Show me the code

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Introduction

personal inclination towards functional programming (strong
typed!)

much work on haskell concurrency/parallelism (way too
much material) but no distribution

Erlang... | think | found something...

Talk is cheap. Show me the code put together a proof of
concept

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Introduction

personal inclination towards functional programming (strong
typed!)

much work on haskell concurrency/parallelism (way too
much material) but no distribution

Erlang... | think | found something...

Talk is cheap. Show me the code put together a proof of
concept

it'll be nice to make a comparative benchmark (both on
time and loc)

Erlang - Hystory

82-85

85-86

87-89
89-97

98
today

Experiments. The language must be high level, symbolic
(Lisp , Prolog ...).

The language must contain primitives for
concurrency and error recovery.

Erlang was developed.
Erlang grows both in users base and code base terms.
Erlang open sourced.

Erlang, together with libraries and the
real-time distributed database Mnesia,
forms the Open Telecom Platform (OTP).

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

History

Erlang - Higher Order

Treat your functions like your integers!

£f(10,fun(x) -> x+1 end).

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

History

Higher Order

Types
Concurrent/Distributed
Concurrent/Distributed
Hot Code

Erlang - Higher Order

Treat your functions like your integers!

£f(10,fun(x) -> x+1 end).

Functions are first-order values = can be passed/returned to/by
functions.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Higher Order

Erlang - Higher Order

Treat your functions like your integers!
£f(10,fun(x) -> x+1 end).

Functions are first-order values = can be passed/returned to/by
functions.
This means functions can be:

1. modified by other functions

2. easily passed over the network

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Higher Order

Erlang - Higher Order

Treat your functions like your integers!
£f(10,fun(x) -> x+1 end).

Functions are first-order values = can be passed/returned to/by
functions.
This means functions can be:

1. modified by other functions

2. easily passed over the network

spawn (test@fujiml,
f,
[10, fun(x) -> x+1 end]).

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Higher Order

Erlang - Higher Order

Treat your functions like your integers!
£f(10,fun(x) -> x+1 end).

Functions are first-order values = can be passed/returned to/by
functions.
This means functions can be:

1. modified by other functions

2. easily passed over the network
spawn (test@fujiml,

f,
[10, fun(x) -> x+1 end]).

Code is not first-class = modules should be.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Higher Order

. Erlang as a framework for
Erlang - Types and Pattern Matching el

programming.

Erlang type system is dynamic = compile right, run badly. M: Stronati

History

Higher Order

Types
Concurrent/Distributed
Concurrent/Distributed

Hot Code

. Erlang as a framework for
Erlang - Types and Pattern Matching paralledistrbuted

programming.

M. Stronati

Erlang type system is dynamic = compile right, run badly.
Few types:
integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)

Types

. Erlang as a framework for
Erlang - Types and Pattern Matching paralledistrbuted

programming.

M. Stronati

Erlang type system is dynamic = compile right, run badly.

Few types:

integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)
lists ([1,2.0,e0f]), tuple ({1,2.0,e0f})

Types

Erlang - Types and Pattern Matching

Erlang type system is dynamic = compile right, run badly.

Few types:

integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)

lists ([1,2.0,e0f]), tuple ({1,2.0,e0f})

0N U WN -

server_protocol (Msg) ->
case Msg of
start -> start_service(),
send ({start ,ack});
stop -> stop_service(),
send ({stop,ack});
{idx,data} -> send({idx,service(data)l})
end.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Types

Erlang - Types and Pattern Matching

Erlang type system is dynamic = compile right, run badly.

Few types:

integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)
lists ([1,2.0,e0f]), tuple ({1,2.0,e0f})

server_protocol (Msg) ->
case Msg of
start -> start_service(),
send ({start ,ack});
stop -> stop_service(),
send ({stop,ack});
{idx,data} -> send({idx,service(data)l})
end.

0N U WN -

Dynamic Typing:

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Types

Erlang - Types and Pattern Matching

Erlang type system is dynamic = compile right, run badly.

Few types:

integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)
lists ([1,2.0,e0f]), tuple ({1,2.0,e0f})

server_protocol (Msg) ->
case Msg of
start -> start_service(),
send ({start ,ack});
stop -> stop_service(),
send ({stop,ack});
{idx,data} -> send({idx,service(data)l})
end.

0N U WN -

Dynamic Typing:

= expoit it: rapid prototyping.
[1,2.0,334,17.2]

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Types

Erlang - Types and Pattern Matching

Erlang type system is dynamic = compile right, run badly.

Few types:

integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)
lists ([1,2.0,e0f]), tuple ({1,2.0,e0f})

server_protocol (Msg) ->
case Msg of
start -> start_service(),
send ({start ,ack});
stop -> stop_service(),
send ({stop,ack});
{idx,data} -> send({idx,service(data)l})
end.

0N U WN -

Dynamic Typing:

= expoit it: rapid prototyping.
(1,2.0,334,17.2]
= avoid it: production use.
define (-def and -type) and check (dialyzer) your types for
serious projects.
-type number :: float() | integer()

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Types

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Histol

Higher Order

Types
Concurrent/Distributed
Concurrent/Distributed
Hot Code

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.
Share-nothing paradigm = lock-free = very scalable.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight

processes.
Share-nothing paradigm = lock-free = very scalable.

Message passing works seemlessly locally

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.
Share-nothing paradigm = lock-free = very scalable.

Message passing works seemlessly locally

spawn(Module, Function, ArgumentList) -> pid()

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.
Share-nothing paradigm = lock-free = very scalable.

Message passing works seemlessly locally
spawn(Module, Function, ArgumentList) -> pid()
or remotely

spawn(Node, Module, Function, ArgumentList) -> pid()

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.
Share-nothing paradigm = lock-free = very scalable.

Message passing works seemlessly locally

spawn(Module, Function, ArgumentList) -> pid()

or remotely

spawn(Node, Module, Function, ArgumentList) -> pid()

Concurency follows the Actor model.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang as a framework for

Erlang - Concurrent/Distributed example el

programming.

M. Stronati

1 | rtt_server () ->
2
3 Pids = map(fun(Node) ->
4 spawn (Node ,pmap ,rtt_client, [self ()])
5 end, Nodes),
6 Rtts = map (fun(Pid) -> Concurrent/Distributed
7 Start = statistics(wall_clock),
8 Pid ! Data,
9 receive
10 Rec when (Rec == Data) ->
11 {_,Rtt} = statistics(

wall_clock);
12 _ -> io:format ("ERROR")
13 end ,
14 Rtt
15 end, Pids),
16

Erlang - Concurrent/Distributed example

o
B O WOWOWONOU D WN -

W N

rtt_server () ->

Pids = map(fun(Node) ->
spawn (Node ,pmap ,rtt_client, [self ()])
end, Nodes),
Rtts = map(fun(Pid) ->

Start = statistics(wall_clock),
Pid ! Data,
receive

Rec when (Rec == Data) ->

{_,Rtt} = statistics(
wall_clock);
_ -> io:format ("ERROR")
end,
Rtt

end, Pids),

rtt_client (Master) ->
receive
Data -> Master ! Data
end.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang - Soft real-time, extras

Easy to set timers:

«Or «Fr «=>»

4

v
it

ae

Erlang - Soft real-time, extras
Easy to set timers:
rtt_client (Master) ->
Timeout = 6000, /ms
receive
Data -> Master ! Data;
_ -> io:format(’error’)
after
Timeout -> Master ! eof
end.

0N U WN -

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang - Soft real-time, extras
Easy to set timers:
rtt_client (Master) ->
Timeout = 6000, /ms
receive
Data -> Master ! Data;
_ -> io:format(’error’)
after
Timeout -> Master ! eof
end.

0N U WN -

Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang - Soft real-time, extras
Easy to set timers:

1 rtt_client (Master) ->

2 Timeout = 6000, /ms

3 receive

4 Data -> Master ! Data;

5 _ -> io:format(’error’)

6 after

7 Timeout -> Master ! eof

8 end.

> Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

» Exception handling

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang - Soft real-time, extras
Easy to set timers:

1 rtt_client (Master) ->

2 Timeout = 6000, /ms

3 receive

4 Data -> Master ! Data;

5 _ -> io:format(’error’)

6 after

7 Timeout -> Master ! eof

8 end.

> Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

» Exception handling

» Interoperativity with Java and C: no-call just messages in

erlang-rts or binary

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang - Soft real-time, extras
Easy to set timers:

1 rtt_client (Master) ->

2 Timeout = 6000, /ms

3 receive

4 Data -> Master ! Data;

5 _ -> io:format(’error’)

6 after

7 Timeout -> Master ! eof

8 end.

v

v

v

v

Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

Exception handling

Interoperativity with Java and C: no-call just messages in

erlang-rts or binary

Native code compiler HYPE

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang - Soft real-time, extras
Easy to set timers:

1 rtt_client (Master) ->

2 Timeout = 6000, /ms

3 receive

4 Data -> Master ! Data;

5 _ -> io:format(’error’)

6 after

7 Timeout -> Master ! eof

8 end.

Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

Exception handling

Interoperativity with Java and C: no-call just messages in

erlang-rts or binary

Native code compiler HYPE

Benchmark and Tracing infrastructure: Inviso

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Concurrent/Distributed

Erlang as a framework for

Erlang - Soft real-time, extras oI g
Easy to set timers: M. Stronatl

1 rtt_client (Master) ->

2 Timeout = 6000, /ms

3 receive

4 Data -> Master ! Data;

5 _ -> io:format(’error’) Concurrent/Distributed
6 after

7 Timeout -> Master ! eof

8 end.

Network friendly: socket, pools, world(), ssh/ssl , mnesia etc
Exception handling

Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

Native code compiler HYPE
Benchmark and Tracing infrastructure: Inviso

Low level operators (erlang embedded)

Erlang as a framework for

Erlang - Soft real-time, extras oI g
Easy to set timers: M. Stronatl

1 rtt_client (Master) ->

2 Timeout = 6000, /ms

3 receive

4 Data -> Master ! Data;

5 _ -> io:format(’error’) Concurrent/Distributed
6 after

7 Timeout -> Master ! eof

8 end.

vV v . v v

Network friendly: socket, pools, world(), ssh/ssl , mnesia etc
Exception handling

Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

Native code compiler HYPE

Benchmark and Tracing infrastructure: Inviso
Low level operators (erlang embedded)

Code hotload

Erlang - Hot code load

As a consequece of higher order, it is possible to hot load code:

0 N WN -

loop(F) ->
receive
{request, Pid, Data} ->
Pid ! F(Data),
loop(F);
{change_code, F1} ->
loop(F1)
end

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Hot Code

Erlang - Hot code load

As a consequece of higher order, it is possible to hot load code:

0 N WN -

N

loop(F) ->
receive
{request, Pid, Data} ->
Pid ! F(Data),
loop(F);
{change_code, F1} ->
loop(F1)
end
Server ! {change_code, fun(I, J) ->

do_something (...)
end}

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Hot Code

Parallel Map

Parallel Map: data parallel, single shot.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap intuition
Pmap code
Pipeline Intuition
Pipeline code

Machines Pool

Parallel Map

Parallel Map: data parallel, single shot.

1

pmap (myfun ,mydata)

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pmap intuition

Parallel Map

Parallel Map: data parallel, single shot.

1 | pmap (myfun ,mydata)

Erlang:

1 pmap (fun(X) -> X+1 end,[1,2,3]).
2 | [2,3,4]

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pmap intuition

Parallel Map

Parallel Map: data parallel, single shot.

1 | pmap (myfun ,mydata)

Erlang:

1 pmap (fun(X) -> X+1 end,[1,2,3]).
[2,3,4]

pmap (fun(Vect) ->
map (fun(X) ->
foreach(fun(_) ->
math:erf (X)
end,
seq(1,NCPU)),
X
end, Vect)
end, Datal),
...Vect...

O WO ~NO U WN -

[y

Erlang as a framework for
parallel /distributed
programming,

M. Stronati

Pmap intuition

Pmap

1. Master dispatch jobs in parallel.

«O> «Fr «E>» <

ae

Pmap

1. Master dispatch jobs in parallel.
2. Both function and data are sent together with an index.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap intuition

Pmap

1. Master dispatch jobs in parallel.
2. Both function and data are sent together with an index.

3. The function is wrapped in a communication container.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap intuition

Pmap

1. Master dispatch jobs in parallel.

2. Both function and data are sent together with an index.

3. The function is wrapped in a communication container.

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pmap intuition

Pmap

Results are collected and sorted.

T(dl) £(d2) (dn)

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pmap intuition

Pmap

A w NN =

. Obtain n nodes.
. Pack the data with an index.
. Create couples {Node,Data}

. Stages wait for data to process.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap code

Pmap

N O U WN e

A w NN =

. Obtain n nodes.
. Pack the data with an index.
. Create couples {Node,Data}

. Stages wait for data to process.

pmap (Function, Datas) ->
Nodes = get_nodes(length(Datas)),
Master = self (),
Indexed_data = zip(seq(1l,length(Datas)),
Datas),
NDS = zip(Nodes,Indexed_data),

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap code

Pmap

g WwN e

o)

pmap (Function, Datas) ->

lists:foreach(fun({Node,Datal})

->

spawn (pmap ,make_worker ,
[Node, Function,

end ,NDS),
collect_results (length(Datas)).

Master])

Data,

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap code

Pmap

1 | pmap (Function, Datas) ->

2

3 lists:foreach(fun({Node,Datal}) ->

4 spawn (pmap ,make_worker ,

5 [Node, Function,
Master])

6 end ,NDS),

7 collect_results (length(Datas)).

Data,

Master

gpawn (make_worker)

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap code

Pmap

Each process (thread), spawns on a different node.

1 make_worker (Node, Function, Data, Master) ->

N

spawn (Node, pmap,

generic_worker,

3 [Function ,Data,Master]).

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap code

Pmap

Each process (thread), spawns on a different node.

1 make_worker (Node, Function, Data, Master) ->
spawn (Node, pmap, generic_worker,
3 [Function ,Data,Master]).

N

Function deployed on workers with its very complex wrapper...

1 generic_worker (Fun,{Idx,Datal},Master) ->
2 Master ! {Idx,Fun(Data)}.

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pmap code

Pmap

Each process (thread), spawns on a different node.

1 make_worker (Node, Function, Data, Master) ->
spawn (Node, pmap, generic_worker,
3 [Function ,Data,Master]).

N

Function deployed on workers with its very complex wrapper...

1 generic_worker (Fun,{Idx,Datal},Master) ->
2 Master ! {Idx,Fun(Data)}.

All pmap implementation ~ 50 loc

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pmap code

Pmap

Each process (thread), spawns on a different node.

N

Function deployed on workers with its very complex wrapper...

1
2

make_worker (Node, Function, Data, Master)

spawn (Node, pmap, generic_worker,
[Function ,Data,Master]).

->

generic_worker (Fun,{Idx,Data},Master)
Master ! {Idx,Fun(Data)l.

->

All pmap implementation ~ 50 loc
Testing/tracing infrastructure ~ 150 loc

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pmap code

Pipeline

Pipeline: one function per stage, stream of data.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Intuition

Pipeline

Pipeline: one function per stage, stream of data.

1 create (funl,fun2,...,fn).
2 | run(datal,data2,...,datan).

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pipeline Intuition

Pipeline

Pipeline: one function per stage, stream of data.

1 create (funl,fun2,...,fn).
2 | run(datal,data2,...,datan).
Erlang:

1 Pids = create([fun(X) -> X+1 end, fun(X) -> X*X end]),
Res = run([1,2,3,4,5], hd(Pids)).
3 [4,9,16,25,36]

N

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pipeline Intuition

Pipeline

Pipeline: one function per stage, stream of data.

1 create (funl,fun2,...,fn).

2 | run(datal,data2,...,datan).

Erlang:

1 Pids = create([fun(X) -> X+1 end, fun(X) -> X*X end]),

2 |Res = run([1,2,3,4,5], hd(Pids)).

3 [4,9,16,25,36]

1 | Pids = create(duplicate(Stage_Number,

2 (fun(X) ->

3 Matrix = duplicate2(50,2.0),

4 multiply_matrix (duplicate (NCPU,
Matrix)),

5 X

6 end)),

7 | Res = run(duplicate(NData,duplicate2(DData,2.0)),

8 hd (Pids))

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pipeline Intuition

Pipeline

1. Master deploy function and pid of the successor to each
stage

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Intuition

Pipeline

1. Master deploy function and pid of the successor to each
stage

2. Stages wait for data to process.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Intuition

. . Erlang as a framework for
P | pel Ine parallel/distributed

programming,

M. Stronati

1. Master deploy function and pid of the successor to each
stage

2. Stages wait for data to process.

Pipeline Intuition

Ideally:

(fn,pid_master)

Pipeline

1. Master feeds data to the first stage.

«O> «Fr «E>» <

ae

Pipeline

1. Master feeds data to the first stage.

2. Each stage applies its function to the data and sends the
result to its successor.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Intuition

Pipeline

1. Master feeds data to the first stage.

2. Each stage applies its function to the data and sends the
result to its successor.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Intuition

Pipeline

1. Master feeds EOF.

«Or «Fr o«

it
v
a
it

ae

Pipeline

1. Master feeds EOF.

2. Each stage propagates EOF to its successor and exits.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Intuition

Pipeline

1. Master feeds EOF.

2. Each stage propagates EOF to its successor and exits.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Intuition

Erlang as a framework for
parallel /distributed

Pipeline orogtamming.

M. Stronati

create (Functions) ->
Nodes = get_nodes(length(Functions)),
NFS = zip(Nodes, Functions),
Pids = foldr (fun(NF, Pids) ->
Pid = make_worker (NF,hd(Pids)),
[Pid] ++ Pids
end, [self()], NFS),

Pipeline code

0N U WN -

Pids.

(fn, self()) (fn-1,pid_n) (f,pid n-1) (f1,pid 2)

Pipeline

[y

O WO ~NO®U P WN

e

Wrapper function that is deployed on the stages.

Pattern matching on Data/EOF.
Tail-recursive call.

Timeout (soft real-time)

generic_worker (Fun,Pid) ->
Timeout = 60000, /ms
receive
eof -> Pid ! eof;
X ->
Pid ! Fun(X),
generic_worker (Fun,Pid)
after
Timeout -> Pid ! eof
end.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline code

Pipeline

oG WN -

feed (Data, Pid) ->
foreach(fun(Elem) ->
Pid ! Elem,
timer:sleep (10000),
end, Data),
Pid ! eof.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline code

Pipeline

oG WN -

0N WN -

feed (Data, Pid) ->
foreach(fun(Elem) ->
Pid ! Elem,
timer:sleep (10000),
end, Data),
Pid ! eof.

collect () -> collect([]).
collect (Acc) ->
receive
eof ->
reverse (Acc) ;
X ->
collect ([X | Acc 1)
end.

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pipeline code

Pipeline

oG WN -

0N WN -

N =

feed (Data, Pid) ->
foreach(fun(Elem) ->
Pid ! Elem,
timer:sleep (10000),
end, Data),
Pid ! eof.

collect () -> collect([]).
collect (Acc) ->
receive
eof ->
reverse (Acc) ;
X ->
collect ([X | Acc 1)
end.

run (Data, Head) ->
feed(Data, Head),
collect ().

pipeline implementation ~ 70 loc

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pipeline code

Pipeline

oG WN -

0N WN -

N =

feed (Data, Pid) ->
foreach(fun(Elem) ->
Pid ! Elem,
timer:sleep (10000),
end, Data),
Pid ! eof.

collect () -> collect([]).
collect (Acc) ->

receive
eof ->
reverse (Acc) ;
X ->

collect ([X | Acc 1)
end.

run (Data, Head) ->
feed(Data, Head),
collect ().

pipeline implementation ~ 70 loc
Testing/tracing infrastructure ~ 190 loc

Erlang as a framework for
parallel /distributed
programming,

M. Stronati

Pipeline code

Machines Pool

The network of machines is managed by the erlang run-time.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Machines Pool

Machines Pool

The network of machines is managed by the erlang run-time.
less .hosts.erlang
’fujiml’ .

’fujim2’ .

’fujim3.cli.di.unipi.it’

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Machines Pool

Machines Pool

The network of machines is managed by the erlang run-time.

less .hosts.erlang
’fujiml’ .
’fujim2’ .

’fujim3.cli.di.unipi.it’

Eshell V5.7.4 (abort with "G)
(test@fujiml)1> net_adm:world(verbose).
Pinging test@fujiml -> pong

Pinging test@fujim2 -> pong

Pinging test@fujim3 -> pong
[test@fujiml,test@fujim2,test@fujim3]

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Machines Pool

Machines Pool

The network of machines is managed by the erlang run-time.

less .hosts.erlang
’fujiml’ .
’fujim2’ .

’fujim3.cli.di.unipi.it’

Eshell V5.7.4 (abort with "G)
(test@fujiml)1> net_adm:world(verbose).
Pinging test@fujiml -> pong

Pinging test@fujim2 -> pong

Pinging test@fujim3 -> pong
[test@fujiml,test@fujim2,test@fujim3]

The get_nodes (number) function returns a list of number active nodes, if less nodes are
available the list is redundant so that consecutive functions are deployed on the same

node (pipeline).

(test@fujiml)3> pipeline:get_nodes(5).
[test@fujiml,test@fujim2,test@fujim2,test@fujim3,test@fujim3]

Erlang library has a pool implementation.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Machines Pool

Benchmarks

All benchmarks were run with dummy code whose only purpose
was to measure CPU/Network performance under different
workload.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Benchmarks

Benchmarks

All benchmarks were run with dummy code whose only purpose
was to measure CPU/Network performance under different
workload.

The D value tunes the load on Network transmission.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Benchmarks

Benchmarks

All benchmarks were run with dummy code whose only purpose
was to measure CPU/Network performance under different
workload.

The D value tunes the load on Network transmission.
The C value tunes the CPU workload.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Benchmarks

Benchmarks

All benchmarks were run with dummy code whose only purpose
was to measure CPU/Network performance under different
workload.

The D value tunes the load on Network transmission.
The C value tunes the CPU workload.

C

~ —

D

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Benchmarks

Benchmarks

All benchmarks were run with dummy code whose only purpose
was to measure CPU/Network performance under different
workload.

The D value tunes the load on Network transmission.
The C value tunes the CPU workload.

C

~ —

D

Hypothesis:
Each node perform the exact same function, on data of the same
size. D and C values are independent.

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Benchmarks

Benchmarks - Inviso

The Inviso framework provided with Erlang was used to trace:
1. function calls, returns

2. messages sent, received

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

Benchmarks - Inviso

The Inviso framework provided with Erlang was used to trace:

1. function calls, returns

2. messages sent, received

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

Erlang as a framework for

Benchmarks - Inviso S
M. Stronati
The Inviso framework provided with Erlang was used to trace:
1. function calls, returns

2. messages sent, received

@ =

Data, once analyzed, contained precise measure (nanoseconds) of Cpu
times and Communication times of every node.

Erlang as a framework for

Benchmarks - Inviso S
M. Stronati
The Inviso framework provided with Erlang was used to trace:
1. function calls, returns

2. messages sent, received

@ =

Data, once analyzed, contained precise measure (nanoseconds) of Cpu
times and Communication times of every node.
Inviso proved to be very powerfull,

Erlang as a framework for

Benchmarks - Inviso S
M. Stronati
The Inviso framework provided with Erlang was used to trace:
1. function calls, returns

2. messages sent, received

@ =

Data, once analyzed, contained precise measure (nanoseconds) of Cpu
times and Communication times of every node.
Inviso proved to be very powerfull, very difficult to use,

Erlang as a framework for
parallel /distributed

Benchmarks - Inviso alel st

M. Stronati

The Inviso framework provided with Erlang was used to trace:
1. function calls, returns

2. messages sent, received

Inviso

Data, once analyzed, contained precise measure (nanoseconds) of Cpu
times and Communication times of every node.
Inviso proved to be very powerfull, very difficult to use, and eventually

very buggy :P

Benchmarks - Inviso

Tell Inviso which node to trace and how:

g WN e

© 00N

trace () ->
inviso:start (),
inviso:add_nodes (Nodes ,mytag, []),
TracedList = lists:map(fun(Elem) ->
{Elem, [{trace,{relayer ,node()}}]} end, OtherNodes)

inviso:init_tracing(TracedList ++ [
{node (),
[{trace,{fun filter/2,[]1}}]1}
n,

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

Benchmarks - Inviso

Alternatives

> Log all trace events to file:

inviso:init_tracing([{client_node (),
[{trace,{file,"client_log"}}1},
{server_node(),
[{trace,{file,"server_log"}}]12}])

S w N

they can be later collected and merged.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

Benchmarks - Inviso

Alternatives

> Log all trace events to file:

S w N

inviso:init_tracing([{client_node (),
[{trace,{file,"client_log"}}1},
{server_node(),
[{trace,{file,"server_log"}}]12}])

they can be later collected and merged.

» Display all trace events in the shell of the node where they occur:

S w N

inviso:init_tracing([{client_node (),
[{trace,collector}]},
{server_node(),
[{trace,collector}]}]).

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

Benchmarks - Inviso

Tell Inviso what needs to be traced:

1
2
3
4

inviso:tpl(OtherNodes ,pipeline, funcfunc,’_’,
[{’_7>,[],[{return_trace}]}]),
inviso:tf (0OtherNodes ,all,[send,’receive’]),

inviso:tf (all, [call,timestamp]l).

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

Benchmarks - Inviso

Tell Inviso what needs to be traced:

1
2
3
4

inviso:tpl(OtherNodes ,pipeline, funcfunc,’_’,

[{’_’,[],[{return_trace}]}]),
inviso:tf (0OtherNodes ,all,[send,’receive’]),
inviso:tf(all, [call,timestamp]).

alternatives:

>

vV vV Y vV VvV VY VY

send

receive

procs

call

return_to

running : Trace scheduling of processes.
exiting

garbage_collection

timestamp

cpu_timestamp

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

Benchmarks - Inviso - filter()

Define a function to treat received data:
Function calls:

1 filter (X,CList) ->

2 case X of

3 {trace_ts,Pid,call ,{M,F,_A},{MgS,S,McS}} ->

4 Call = {{M,F,Pid},(McS+(S*1000000)+

5 (MgS*1000000000000))},

6 CList ++ [Calll;

7 {trace_ts,Pid,return_from,{M,F, _A},_R,{MgS,S,McS}} ->
8 FTime = (McS+(S*1000000)+

9 (MgS*1000000000000)),

10 case lists:keysearch({M,F,Pid},1,CList) of
11 {value,{_,STime}} ->

12 ETime = FTime - STime,

13 log ({node ,Pid,ETime});

14 _ -> ok

15 end,

16 lists:keydelete ({M,F,Pid},1,CList);

17

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

Benchmarks - Inviso - filter()

[y

Define a function to treat received data:
Messages:

{trace_ts,Pid,send,Msg,Dest,{MgS,S,McS}} ->
Time = McS+(S*1000000) +(MgS*1000000000000) ,
case Msg of

eof -> ok;
[[FI_]11_] when is_number(F) ->
log({send,Pid,Time});
_ => ok
end,
CList;

O WO ~NO®U P WNF

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

. Erlang as a framework for
Benchmarks - Inviso - raw log paaldisributed

programming,

M. Stronati

Raw log generateb by Inviso:

{rec, "<9434.102.0>", 1268574271799829}.
{rec, "<9434.102.0>", 1268574273803683}. Invise
{rec, "<9434.102.0>", 1268574275807627}.
{node, "<9434.102.0>", 19354161}.

{send, "<9434.102.0>", 1268574287147508}.
{rec, "<9471.101.0>", 1268574284572751}.
{node, "<9471.101.0>", 18370486} .

{send, "<9471.101.0>", 1268574302945083}.
{rec, "<9472.99.0>", 1268574303184890}.
{node, "<9434.102.0>", 19671653}.

{send, "<9434.102.0>", 1268574306867066} .
{rec, "<9471.101.0>", 1268574304291474}.

Benchmarks - Inviso - analyze()

Pass the log through analyze() to extract needed info:

1 | analyze (Pids ,File) when is_list(Pids)->

2 {ok, Log} = file:consult("log.txt"),

3 SendList2 = lists:filter (fun({Type,Pid,Timel}) ->
4 case Type of

5 send -> true;

6 -> false

7 end

8 end,Log),

9 {L11,L12,L13} = lists:unzip3(SendList2),

10 SendList= lists:keysort(1l,lists:zip(L12,L13)),
11

12 RecList= lists:keysort(1l,lists:zip(L22,L23)),

13

14 NodeList= lists:keysort(l,lists:zip(L32,L33)),
15 CPUTimes = ...

16 {ok, FileDescriptor} = file:open(File, [append]),
17 io:format (FileDescriptor, "#service time: “p~n",
18 [max (CPUTimes) /1000000]),
19

20 file:close(FileDescriptor).

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

Benchmarks - Inviso - log
Refined log for pmap:

{dimData, "nData", nCPU}.
{1500000, "2", 160}.

{node, "<3961.15734.0>", 50637248}.
{node, "<3970.10574.0>", 50419248}.

{total, "time", nmachines}.
{total, "54107364", 2}.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso

Benchmarks - Inviso - log
Refined log for pmap:

{dimData, "nData", nCPU}.

{1500000, "2", 160}.

{node, "<3961.15734.0>", 50637248}.
{node, "<3970.10574.0>", 50419248}.
{total, "time", nmachines}.

{total, "54107364", 2}.

Refined log for pipeline:

#nStages nCPU nData nData

#3 10 50 5

#PIDS: ["<3960.85.0>","<3962.85.0>","<3961.85.0>"]
#service time: 1.915271

1 1.915271 1.892735 1.899414 1.884896
2 1.856185 1.842149 1.839809 1.853133
3 1.866492 1.848686 1.830319 1.850508

no network data ;(

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Inviso

1.848452
1.85122
1.842933

Erlang Overhead

Al test were performed with lists of floats on 32bit single-core

machines (fujim).

List of N floats = N x (1 + 4words) x 4bytes = N x 20bytes.
Erlang introduces an overhead of 20% for data structures.
Overhead due to byte code transfer should be negligible for our

applications.

Average Roud Trip Time tested on 10 machines:

Data Dim Est Dim | RTT(sec) | MBs
matrix 2000 76 MB 7.876 19
matrix 1000 19 MB 1.895 21
matrix 300 1757 KB 0.184 18
matrix 200 781 KB 0.083 18
matrix 150 439 KB 0.046 18
matrix 100 195 KB 0.020 19
matrix 50 48 KB 0.008 11

lists 1500000 | 28 MB 3.056 18

Communication Speed ~ 20 MB/sec = 160Mb/s
Very impressive on a 100 Mb/s network :)

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Network

Erlang Overhead

Al test were performed with lists of floats on 32bit single-core

machines (fujim).

List of N floats = N x (1 + 4words) x 4bytes = N x 20bytes.
Erlang introduces an overhead of 20% for data structures.
Overhead due to byte code transfer should be negligible for our

applications.

Average Roud Trip Time tested on 10 machines:

Data Dim Est Dim | RTT(sec) | MBs
matrix 2000 76 MB 7.876 19
matrix 1000 19 MB 1.895 21
matrix 300 1757 KB 0.184 18
matrix 200 781 KB 0.083 18
matrix 150 439 KB 0.046 18
matrix 100 195 KB 0.020 19
matrix 50 48 KB 0.008 11

lists 1500000 | 28 MB 3.056 18

Communication Speed ~ 20 MB/sec = 160Mb/s
Very impressive on a 100 Mb/s network :)

Tried with matrix of 2.0 or with diffent values.

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Network

Erlang Overhead

Al test were performed with lists of floats on 32bit single-core

machines (fujim).

List of N floats = N x (1 + 4words) x 4bytes = N x 20bytes.
Erlang introduces an overhead of 20% for data structures.
Overhead due to byte code transfer should be negligible for our

applications.

Average Roud Trip Time tested on 10 machines:

Data Dim Est Dim | RTT(sec) | MBs
matrix 2000 76 MB 7.876 19
matrix 1000 19 MB 1.895 21
matrix 300 1757 KB 0.184 18
matrix 200 781 KB 0.083 18
matrix 150 439 KB 0.046 18
matrix 100 195 KB 0.020 19
matrix 50 48 KB 0.008 11

lists 1500000 | 28 MB 3.056 18

Communication Speed ~ 20 MB/sec = 160Mb/s
Very impressive on a 100 Mb/s network :)

Tried with matrix of 2.0 or with diffent values.
No tcpdump/tshark/wireshark so the mistery remains.

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Network

Erlang as a framework for
Pma P Benchmark parallel /distributed

programming.

M. Stronati

Parallel map was tested with simple lists of floats for finer grained results.

1. a list of D floats is splitted into N sublists.

Network
Pmap Benchmarks
Pipeline Benchmark

Pmap Benchmark

Parallel map was tested with simple lists of floats for finer grained results.

1. a list of D floats is splitted into N sublists.

2. on each element is applied C times the erfc function.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap Benchmarks

Pmap Benchmark

Parallel map was tested with simple lists of floats for finer grained results.

1. a list of D floats is splitted into N sublists.
2. on each element is applied C times the erfc function.
3. the same value received is sent back.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap Benchmarks

Pmap Benchmark

Parallel map was tested with simple lists of floats for finer grained results.

0 ~NO U WN -

1. alist of D floats is splitted into N sublists.
2. on each element is applied C times the erfc function.

3. the same value received is sent back.

test (DimData, NData, NCPU) ->

Data = [list od DimData is splitted to NDatal
pmap (fun(Vect) ->
map (fun(X) ->
foreach(fun(_) ->
math:erf (X)
end,
seq(1,NCPU)),
X
end, Vect)
end, Data),

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap Benchmarks

Pmap

Seconds

180

Completion Time

T
160 ——

Machines

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Network
Pmap Benchmarks
Pipeline Benchmark

Pmap

Seconds

Completion Time

Machines

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap Benchmarks

Pmap

Scalability

0 I L I I I I I
2 4 6 8 10 12 14

Machines

Erlang as a framework for
parallel /distributed
programming.

M. Stronati
Inviso
Network
Pmap Benchmarks
Pipeline Benchmark

Pmap best sequential

©O0O~NOOdWN-

seque (DimData, NCPU) ->
Data = duplicate(DimData ,2.0),
{Time ,Res} =
tc(lists ,map,

[fun(X) ->
foreach(fun(_) ->
erf (X)
end,
seq(1,NCPU)),
X

end, Datal),
Time.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pmap Benchmarks

Erlang as a framework for
Pmap

parallel /distributed
programming.

M. Stronati

Speedup

Inviso
Ne
Pmap Benchmarks

ork

Pipeline Benchmark

speedup(p)

0 L L L L

2 4 6 8 10 12
Machines

Efficiency(p)

Erlang as a framework for
parallel /distributed

programming.
M. Stronati
Efficiency
166 —

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

8 10 12 14
Machines

Erlang as a framework for
P ma p parallel/distributed
programming.

M. Stronati

Efficiency

T
160 ——

Pmap Benchmarks

Efficiency(p)

I I I —
2 4 6 8

Machines Notice
the fall on 10 machines...

Pmap

Seconds

180

Completion Time

T
160 ——

Machines

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Inviso
Ne
Pmap Benchmarks
Pipeline Benchmark

ork

Erlang as a framework for

P ma p parallel/distributed

programming.

M. Stronati
Scalability
1 ' ! 160 —+—
B Inviso
Network
Pmap Benchmarks
Pipeline Benchmark

0 L L L L L L L

2 4 6 8 10 12 14
Machines

Erlang as a framework for
P m a p parallel /distributed

programming.

M. Stronati
Speedup
16 T T T
160 ——
1wl igg"’f/ 7 Inviso
__—ideal —=— Network

Pmap Benchmarks
Pipeline Benchmark

speedup(p)

0 L L L L L L L

2 4 6 8 10 12 14
Machines

Efficiency(p)

Efficiency

T
160 ——

200 ——

8
Machines

Erlang as a framework for
parallel /distributed
programming.

M. Stronati
Inviso
Network
Pmap Benchmarks
Pipeline Benchmark

Erlang as a framework for
P ma p parallel/distributed
programming.

M. Stronati

Efficiency

T
160 ——

200 ——

Pmap Benchmarks

Pipeline Benchmark

Efficiency(p)

L L L L
2 4 6 8 10

Machines Much
better :)

. . Erlang as a framework for
Pipeline Benchmark parleldisibued

programming.

M. Stronati

A small library to handle matrix multiplication was implemented:
1. generate 50x50 matrix with the same value 2.0.: duplicate2(50,2.0)

Network
Pmap Benchmarks

Pipeline Benchmark

Pipeline Benchmark

A small library to handle matrix multiplication was implemented:
1. generate 50x50 matrix with the same value 2.0.: duplicate2(50,2.0)
2. multiply a list of matrices: multiply matrix([M1,M2,...,Mn])

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Pipeline Benchmark

A small library to handle matrix multiplication was implemented:
1. generate 50x50 matrix with the same value 2.0.: duplicate2(50,2.0)
2. multiply a list of matrices: multiply matrix([M1,M2,...,Mn])
3. C power: multiply matrix(duplicate(C,duplicate2(D,X)))

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Pipeline Benchmark

A small library to handle matrix multiplication was implemented:
1. generate 50x50 matrix with the same value 2.0.: duplicate2(50,2.0)
2. multiply a list of matrices: multiply matrix([M1,M2,...,Mn])
3. C power: multiply matrix(duplicate(C,duplicate2(D,X)))

1 | test(NStages ,NCPU,DData,NData) ->

2 e

3 Pids = create(duplicate(NStages,

4 fun(X) ->

5 Matrix = duplicate2(50,2.0),

6 multiply_matrix(duplicate (NCPU,Matrix)),
7 X

8 end)),

9 .

10 Res = run(duplicate(NData, duplicate2(DData,2.0)),
11 hd (Pids)),

12

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Pipeline

Feeding is too fast, in this case 2 sec.
Inter departure time Tp < Ts

Pipeline Service Time 10-150-50-10

Latency/Service Time

27

-

S

Tsy: 28.244
C=150 D=50

stage

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Pipeline Benchmark: head is the bottleneck

Feeding is close to average Service Time: 27 sec.

Pipeline Service Time 10-150-50-10

27.45

27.35

Latency/Service Time

27.25

27.15

*e

.

-

* @t

Ll

Tsy: 27.374
C=150 D=50

Stage

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Pipeline

Pipeline Service Time 10-50-50-10

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

9.22 T
9.2 - T
9.18 B
I []
£ 3 Pipeline Benchmark
= 916 1
@
(=)
2
o 914 a + B
wn A
= * A
[} 4
§ 912 4 .] R b
E % [: A *
91 N . . 8 I
§ iy ©oe
-
& o
9.08 - @ * w 1
A
9.06 | | 1 |
0 2 4 6 8 10
Stage

C=50 D=50

Pipeline - Ts;

Pipeline Service Time 10-50-150-10

Latency/Service Time

a

to

3% o0

C=50 D=150

stage

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Pipeline - Ts;

Pipeline Service Time 10-50-200-10

96 :

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

ot

Latency/Service Time
>
»

e
-
o mrx

1%

L=

>

o

b

T Pipeline Benchmark

Stage

C=50 D=200

Pipeline - Ts;

Pipeline Service Time 10-50-1000-10

Latency/Service Time
in
T

e

RS

re

C=50 D=1000

stage

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Pipeline - Looking for the unbalanced case

Ta = average(InterArrival Times)

Ts = max{Ts;}
C| D Ta Ts o
50 | 50 9.199 | 9.211453 | 1.00
50 | 150 | 9.629 | 9.530386 | 0.98
50 | 200 | 9.868 | 9.581177 | 0.97
50 | 300 | 10.069 | 9.799503 | 0.97
50 | 1000 | 19.452 | 12.882535 | 0.66

matrix of 1000 floats ~ 19MB = RTT: 1.895 sec.

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Going further

vV v v Y

implement other skeletons:

> farm as a general case for pmap
» fold as a particular case for pipeline

exploit higher order

» compose skeletons: pmap(fun(X) -> pmap(X) end,
[[1..3000],[1..2000]1)

do things the right way: erlang pool manager
fault tolerance: handle exceptions
learn from errors: autonomic first-stage pipeline

make ports for dusty deck code

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pipeline Benchmark

Going further

implement other skeletons:

> farm as a general case for pmap
» fold as a particular case for pipeline

exploit higher order

» compose skeletons: pmap(fun(X) -> pmap(X) end,
[[1..3000],[1..2000]1)

do things the right way: erlang pool manager
fault tolerance: handle exceptions

learn from errors: autonomic first-stage pipeline
make ports for dusty deck code

(lot further) make a manager with inviso/heartbeat...

Erlang as a framework for
parallel /distributed
programming

M. Stronati

Pipeline Benchmark

Going further

Erlang as a didactic/specification language:
> high level components: pmap — pipeline — farm
> write application specification with full abstraction

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Going further

Erlang as a didactic/specification language:
> high level components: pmap — pipeline — farm
> write application specification with full abstraction
» middle level: my little framework

> write framework with erlang abstraction
(send/receive/spawn...)

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Going further

Erlang as a didactic/specification language:
> high level components: pmap — pipeline — farm
> write application specification with full abstraction
» middle level: my little framework

> write framework with erlang abstraction
(send/receive/spawn...)

» TCP/UDP, ssh, posix ...

» write framework with posix abstraction

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

Going further

Erlang as a didactic/specification language:
> high level components: pmap — pipeline — farm
> write application specification with full abstraction
» middle level: my little framework
> write framework with erlang abstraction
(send/receive/spawn...)
» TCP/UDP, ssh, posix ...

» write framework with posix abstraction
> only short-coming is no shared memory support

Erlang as a framework for
parallel /distributed
programming.

M. Stronati

Pipeline Benchmark

	Introduction
	Language
	History
	Higher Order
	Types
	Concurrent/Distributed
	Concurrent/Distributed
	Hot Code

	Skeletons
	Pmap intuition
	Pmap code
	Pipeline Intuition
	Pipeline code
	Machines Pool

	Benchmarks
	Inviso
	Network
	Pmap Benchmarks
	Pipeline Benchmark

