
Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Erlang as a framework for
parallel/distributed programming.

Marco Stronati
marco.stronati@gmail.com

2010

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

I personal inclination towards functional programming (strong
typed!)

I much work on haskell concurrency/parallelism (way too
much material) but no distribution

I Erlang... I think I found something...

I Talk is cheap. Show me the code put together a proof of
concept

I it’ll be nice to make a comparative benchmark (both on
time and loc)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

I personal inclination towards functional programming (strong
typed!)

I much work on haskell concurrency/parallelism (way too
much material) but no distribution

I Erlang... I think I found something...

I Talk is cheap. Show me the code put together a proof of
concept

I it’ll be nice to make a comparative benchmark (both on
time and loc)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

I personal inclination towards functional programming (strong
typed!)

I much work on haskell concurrency/parallelism (way too
much material) but no distribution

I Erlang...

I think I found something...

I Talk is cheap. Show me the code put together a proof of
concept

I it’ll be nice to make a comparative benchmark (both on
time and loc)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

I personal inclination towards functional programming (strong
typed!)

I much work on haskell concurrency/parallelism (way too
much material) but no distribution

I Erlang... I think I found something...

I Talk is cheap. Show me the code put together a proof of
concept

I it’ll be nice to make a comparative benchmark (both on
time and loc)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

I personal inclination towards functional programming (strong
typed!)

I much work on haskell concurrency/parallelism (way too
much material) but no distribution

I Erlang... I think I found something...

I Talk is cheap. Show me the code

put together a proof of
concept

I it’ll be nice to make a comparative benchmark (both on
time and loc)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

I personal inclination towards functional programming (strong
typed!)

I much work on haskell concurrency/parallelism (way too
much material) but no distribution

I Erlang... I think I found something...

I Talk is cheap. Show me the code put together a proof of
concept

I it’ll be nice to make a comparative benchmark (both on
time and loc)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

I personal inclination towards functional programming (strong
typed!)

I much work on haskell concurrency/parallelism (way too
much material) but no distribution

I Erlang... I think I found something...

I Talk is cheap. Show me the code put together a proof of
concept

I it’ll be nice to make a comparative benchmark (both on
time and loc)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Hystory

82-85 Experiments. The language must be high level, symbolic
(Lisp , Prolog ...).

85-86 The language must contain primitives for
concurrency and error recovery.

87-89 Erlang was developed.

89-97 Erlang grows both in users base and code base terms.

98 Erlang open sourced.

today Erlang, together with libraries and the
real-time distributed database Mnesia,
forms the Open Telecom Platform (OTP).

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Higher Order

Treat your functions like your integers!

f(10,fun(x) -> x+1 end).

Functions are first-order values ⇒ can be passed/returned to/by
functions.
This means functions can be:

1. modified by other functions

2. easily passed over the network

spawn(test@fujim1,

f,

[10, fun(x) -> x+1 end]).

Code is not first-class ⇒ modules should be.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Higher Order

Treat your functions like your integers!

f(10,fun(x) -> x+1 end).

Functions are first-order values ⇒ can be passed/returned to/by
functions.

This means functions can be:

1. modified by other functions

2. easily passed over the network

spawn(test@fujim1,

f,

[10, fun(x) -> x+1 end]).

Code is not first-class ⇒ modules should be.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Higher Order

Treat your functions like your integers!

f(10,fun(x) -> x+1 end).

Functions are first-order values ⇒ can be passed/returned to/by
functions.
This means functions can be:

1. modified by other functions

2. easily passed over the network

spawn(test@fujim1,

f,

[10, fun(x) -> x+1 end]).

Code is not first-class ⇒ modules should be.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Higher Order

Treat your functions like your integers!

f(10,fun(x) -> x+1 end).

Functions are first-order values ⇒ can be passed/returned to/by
functions.
This means functions can be:

1. modified by other functions

2. easily passed over the network

spawn(test@fujim1,

f,

[10, fun(x) -> x+1 end]).

Code is not first-class ⇒ modules should be.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Higher Order

Treat your functions like your integers!

f(10,fun(x) -> x+1 end).

Functions are first-order values ⇒ can be passed/returned to/by
functions.
This means functions can be:

1. modified by other functions

2. easily passed over the network

spawn(test@fujim1,

f,

[10, fun(x) -> x+1 end]).

Code is not first-class ⇒ modules should be.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Types and Pattern Matching

Erlang type system is dynamic ⇒ compile right, run badly.

Few types:
integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)
lists ([1,2.0,eof]), tuple ({1,2.0,eof})

1 server_protocol(Msg)->
2 case Msg of
3 start -> start_service (),
4 send({start ,ack});
5 stop -> stop_service (),
6 send({stop ,ack});
7 {idx ,data} -> send({idx ,service(data)})
8 end.

Dynamic Typing:

⇒ expoit it: rapid prototyping.
[1,2.0,334,17.2]

⇒ avoid it: production use.
define (-def and -type) and check (dialyzer) your types for
serious projects.
-type number :: float() | integer()

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Types and Pattern Matching

Erlang type system is dynamic ⇒ compile right, run badly.
Few types:
integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)

lists ([1,2.0,eof]), tuple ({1,2.0,eof})

1 server_protocol(Msg)->
2 case Msg of
3 start -> start_service (),
4 send({start ,ack});
5 stop -> stop_service (),
6 send({stop ,ack});
7 {idx ,data} -> send({idx ,service(data)})
8 end.

Dynamic Typing:

⇒ expoit it: rapid prototyping.
[1,2.0,334,17.2]

⇒ avoid it: production use.
define (-def and -type) and check (dialyzer) your types for
serious projects.
-type number :: float() | integer()

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Types and Pattern Matching

Erlang type system is dynamic ⇒ compile right, run badly.
Few types:
integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)
lists ([1,2.0,eof]), tuple ({1,2.0,eof})

1 server_protocol(Msg)->
2 case Msg of
3 start -> start_service (),
4 send({start ,ack});
5 stop -> stop_service (),
6 send({stop ,ack});
7 {idx ,data} -> send({idx ,service(data)})
8 end.

Dynamic Typing:

⇒ expoit it: rapid prototyping.
[1,2.0,334,17.2]

⇒ avoid it: production use.
define (-def and -type) and check (dialyzer) your types for
serious projects.
-type number :: float() | integer()

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Types and Pattern Matching

Erlang type system is dynamic ⇒ compile right, run badly.
Few types:
integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)
lists ([1,2.0,eof]), tuple ({1,2.0,eof})

1 server_protocol(Msg)->
2 case Msg of
3 start -> start_service (),
4 send({start ,ack});
5 stop -> stop_service (),
6 send({stop ,ack});
7 {idx ,data} -> send({idx ,service(data)})
8 end.

Dynamic Typing:

⇒ expoit it: rapid prototyping.
[1,2.0,334,17.2]

⇒ avoid it: production use.
define (-def and -type) and check (dialyzer) your types for
serious projects.
-type number :: float() | integer()

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Types and Pattern Matching

Erlang type system is dynamic ⇒ compile right, run badly.
Few types:
integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)
lists ([1,2.0,eof]), tuple ({1,2.0,eof})

1 server_protocol(Msg)->
2 case Msg of
3 start -> start_service (),
4 send({start ,ack});
5 stop -> stop_service (),
6 send({stop ,ack});
7 {idx ,data} -> send({idx ,service(data)})
8 end.

Dynamic Typing:

⇒ expoit it: rapid prototyping.
[1,2.0,334,17.2]

⇒ avoid it: production use.
define (-def and -type) and check (dialyzer) your types for
serious projects.
-type number :: float() | integer()

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Types and Pattern Matching

Erlang type system is dynamic ⇒ compile right, run badly.
Few types:
integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)
lists ([1,2.0,eof]), tuple ({1,2.0,eof})

1 server_protocol(Msg)->
2 case Msg of
3 start -> start_service (),
4 send({start ,ack});
5 stop -> stop_service (),
6 send({stop ,ack});
7 {idx ,data} -> send({idx ,service(data)})
8 end.

Dynamic Typing:

⇒ expoit it: rapid prototyping.
[1,2.0,334,17.2]

⇒ avoid it: production use.
define (-def and -type) and check (dialyzer) your types for
serious projects.
-type number :: float() | integer()

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Types and Pattern Matching

Erlang type system is dynamic ⇒ compile right, run badly.
Few types:
integer, float, bool, atom (eof), fun (fun...end), pid (<0.39.0>)
lists ([1,2.0,eof]), tuple ({1,2.0,eof})

1 server_protocol(Msg)->
2 case Msg of
3 start -> start_service (),
4 send({start ,ack});
5 stop -> stop_service (),
6 send({stop ,ack});
7 {idx ,data} -> send({idx ,service(data)})
8 end.

Dynamic Typing:

⇒ expoit it: rapid prototyping.
[1,2.0,334,17.2]

⇒ avoid it: production use.
define (-def and -type) and check (dialyzer) your types for
serious projects.
-type number :: float() | integer()

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.

Share-nothing paradigm ⇒ lock-free ⇒ very scalable.

Message passing works seemlessly locally

spawn(Module, Function, ArgumentList) -> pid()

or remotely

spawn(Node, Module, Function, ArgumentList) -> pid()

Concurency follows the Actor model.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.
Share-nothing paradigm ⇒ lock-free ⇒ very scalable.

Message passing works seemlessly locally

spawn(Module, Function, ArgumentList) -> pid()

or remotely

spawn(Node, Module, Function, ArgumentList) -> pid()

Concurency follows the Actor model.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.
Share-nothing paradigm ⇒ lock-free ⇒ very scalable.

Message passing works seemlessly locally

spawn(Module, Function, ArgumentList) -> pid()

or remotely

spawn(Node, Module, Function, ArgumentList) -> pid()

Concurency follows the Actor model.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.
Share-nothing paradigm ⇒ lock-free ⇒ very scalable.

Message passing works seemlessly locally

spawn(Module, Function, ArgumentList) -> pid()

or remotely

spawn(Node, Module, Function, ArgumentList) -> pid()

Concurency follows the Actor model.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.
Share-nothing paradigm ⇒ lock-free ⇒ very scalable.

Message passing works seemlessly locally

spawn(Module, Function, ArgumentList) -> pid()

or remotely

spawn(Node, Module, Function, ArgumentList) -> pid()

Concurency follows the Actor model.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Concurrent/Distributed

Implements asynchronous message-passing model through light-weight
processes.
Share-nothing paradigm ⇒ lock-free ⇒ very scalable.

Message passing works seemlessly locally

spawn(Module, Function, ArgumentList) -> pid()

or remotely

spawn(Node, Module, Function, ArgumentList) -> pid()

Concurency follows the Actor model.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Concurrent/Distributed example

1 rtt_server () ->
2 ...
3 Pids = map(fun(Node) ->
4 spawn(Node ,pmap ,rtt_client ,[self()])
5 end , Nodes),
6 Rtts = map(fun(Pid) ->
7 Start = statistics(wall_clock),
8 Pid ! Data ,
9 receive

10 Rec when (Rec == Data) ->
11 {_,Rtt} = statistics(

wall_clock);
12 _ -> io:format("ERROR")
13 end ,
14 Rtt
15 end , Pids),
16 ...

1 rtt_client(Master) ->
2 receive
3 Data -> Master ! Data
4 end.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Concurrent/Distributed example

1 rtt_server () ->
2 ...
3 Pids = map(fun(Node) ->
4 spawn(Node ,pmap ,rtt_client ,[self()])
5 end , Nodes),
6 Rtts = map(fun(Pid) ->
7 Start = statistics(wall_clock),
8 Pid ! Data ,
9 receive

10 Rec when (Rec == Data) ->
11 {_,Rtt} = statistics(

wall_clock);
12 _ -> io:format("ERROR")
13 end ,
14 Rtt
15 end , Pids),
16 ...

1 rtt_client(Master) ->
2 receive
3 Data -> Master ! Data
4 end.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Soft real-time, extras

Easy to set timers:

1 rtt_client(Master) ->
2 Timeout = 6000, %ms
3 receive
4 Data -> Master ! Data;
5 _ -> io:format(’error ’)
6 after
7 Timeout -> Master ! eof
8 end.

I Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

I Exception handling

I Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

I Native code compiler HYPE

I Benchmark and Tracing infrastructure: Inviso

I Low level operators (erlang embedded)

I Code hotload

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Soft real-time, extras

Easy to set timers:

1 rtt_client(Master) ->
2 Timeout = 6000, %ms
3 receive
4 Data -> Master ! Data;
5 _ -> io:format(’error ’)
6 after
7 Timeout -> Master ! eof
8 end.

I Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

I Exception handling

I Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

I Native code compiler HYPE

I Benchmark and Tracing infrastructure: Inviso

I Low level operators (erlang embedded)

I Code hotload

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Soft real-time, extras

Easy to set timers:

1 rtt_client(Master) ->
2 Timeout = 6000, %ms
3 receive
4 Data -> Master ! Data;
5 _ -> io:format(’error ’)
6 after
7 Timeout -> Master ! eof
8 end.

I Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

I Exception handling

I Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

I Native code compiler HYPE

I Benchmark and Tracing infrastructure: Inviso

I Low level operators (erlang embedded)

I Code hotload

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Soft real-time, extras

Easy to set timers:

1 rtt_client(Master) ->
2 Timeout = 6000, %ms
3 receive
4 Data -> Master ! Data;
5 _ -> io:format(’error ’)
6 after
7 Timeout -> Master ! eof
8 end.

I Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

I Exception handling

I Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

I Native code compiler HYPE

I Benchmark and Tracing infrastructure: Inviso

I Low level operators (erlang embedded)

I Code hotload

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Soft real-time, extras

Easy to set timers:

1 rtt_client(Master) ->
2 Timeout = 6000, %ms
3 receive
4 Data -> Master ! Data;
5 _ -> io:format(’error ’)
6 after
7 Timeout -> Master ! eof
8 end.

I Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

I Exception handling

I Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

I Native code compiler HYPE

I Benchmark and Tracing infrastructure: Inviso

I Low level operators (erlang embedded)

I Code hotload

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Soft real-time, extras

Easy to set timers:

1 rtt_client(Master) ->
2 Timeout = 6000, %ms
3 receive
4 Data -> Master ! Data;
5 _ -> io:format(’error ’)
6 after
7 Timeout -> Master ! eof
8 end.

I Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

I Exception handling

I Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

I Native code compiler HYPE

I Benchmark and Tracing infrastructure: Inviso

I Low level operators (erlang embedded)

I Code hotload

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Soft real-time, extras

Easy to set timers:

1 rtt_client(Master) ->
2 Timeout = 6000, %ms
3 receive
4 Data -> Master ! Data;
5 _ -> io:format(’error ’)
6 after
7 Timeout -> Master ! eof
8 end.

I Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

I Exception handling

I Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

I Native code compiler HYPE

I Benchmark and Tracing infrastructure: Inviso

I Low level operators (erlang embedded)

I Code hotload

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Soft real-time, extras

Easy to set timers:

1 rtt_client(Master) ->
2 Timeout = 6000, %ms
3 receive
4 Data -> Master ! Data;
5 _ -> io:format(’error ’)
6 after
7 Timeout -> Master ! eof
8 end.

I Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

I Exception handling

I Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

I Native code compiler HYPE

I Benchmark and Tracing infrastructure: Inviso

I Low level operators (erlang embedded)

I Code hotload

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Soft real-time, extras

Easy to set timers:

1 rtt_client(Master) ->
2 Timeout = 6000, %ms
3 receive
4 Data -> Master ! Data;
5 _ -> io:format(’error ’)
6 after
7 Timeout -> Master ! eof
8 end.

I Network friendly: socket, pools, world(), ssh/ssl , mnesia etc

I Exception handling

I Interoperativity with Java and C: no-call just messages in
erlang-rts or binary

I Native code compiler HYPE

I Benchmark and Tracing infrastructure: Inviso

I Low level operators (erlang embedded)

I Code hotload

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Hot code load

As a consequece of higher order, it is possible to hot load code:

1 loop(F) ->
2 receive
3 {request , Pid , Data} ->
4 Pid ! F(Data),
5 loop(F);
6 {change_code , F1} ->
7 loop(F1)
8 end

1 Server ! {change_code , fun(I, J) ->
2 do_something (...)
3 end}

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

History

Higher Order

Types

Concurrent/Distributed

Concurrent/Distributed

Hot Code

Skeletons

Benchmarks

Erlang - Hot code load

As a consequece of higher order, it is possible to hot load code:

1 loop(F) ->
2 receive
3 {request , Pid , Data} ->
4 Pid ! F(Data),
5 loop(F);
6 {change_code , F1} ->
7 loop(F1)
8 end

1 Server ! {change_code , fun(I, J) ->
2 do_something (...)
3 end}

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Parallel Map

Parallel Map: data parallel, single shot.

1 pmap(myfun ,mydata)

Erlang:

1 pmap(fun(X) -> X+1 end ,[1,2,3]).
2 [2,3,4]

1 pmap(fun(Vect) ->
2 map(fun(X) ->
3 foreach(fun(_) ->
4 math:erf(X)
5 end ,
6 seq(1,NCPU)),
7 X
8 end , Vect)
9 end , Data]),

10 ... Vect ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Parallel Map

Parallel Map: data parallel, single shot.

1 pmap(myfun ,mydata)

Erlang:

1 pmap(fun(X) -> X+1 end ,[1,2,3]).
2 [2,3,4]

1 pmap(fun(Vect) ->
2 map(fun(X) ->
3 foreach(fun(_) ->
4 math:erf(X)
5 end ,
6 seq(1,NCPU)),
7 X
8 end , Vect)
9 end , Data]),

10 ... Vect ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Parallel Map

Parallel Map: data parallel, single shot.

1 pmap(myfun ,mydata)

Erlang:

1 pmap(fun(X) -> X+1 end ,[1,2,3]).
2 [2,3,4]

1 pmap(fun(Vect) ->
2 map(fun(X) ->
3 foreach(fun(_) ->
4 math:erf(X)
5 end ,
6 seq(1,NCPU)),
7 X
8 end , Vect)
9 end , Data]),

10 ... Vect ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Parallel Map

Parallel Map: data parallel, single shot.

1 pmap(myfun ,mydata)

Erlang:

1 pmap(fun(X) -> X+1 end ,[1,2,3]).
2 [2,3,4]

1 pmap(fun(Vect) ->
2 map(fun(X) ->
3 foreach(fun(_) ->
4 math:erf(X)
5 end ,
6 seq(1,NCPU)),
7 X
8 end , Vect)
9 end , Data]),

10 ... Vect ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

1. Master dispatch jobs in parallel.

2. Both function and data are sent together with an index.

3. The function is wrapped in a communication container.

W1 W2 ... WN

Master

(f,d1) (f,d2) ... (f,dn)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

1. Master dispatch jobs in parallel.

2. Both function and data are sent together with an index.

3. The function is wrapped in a communication container.

W1 W2 ... WN

Master

(f,d1) (f,d2) ... (f,dn)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

1. Master dispatch jobs in parallel.

2. Both function and data are sent together with an index.

3. The function is wrapped in a communication container.

W1 W2 ... WN

Master

(f,d1) (f,d2) ... (f,dn)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

1. Master dispatch jobs in parallel.

2. Both function and data are sent together with an index.

3. The function is wrapped in a communication container.

W1 W2 ... WN

Master

(f,d1) (f,d2) ... (f,dn)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

Results are collected and sorted.

W1

Master

f(d1)

W2

f(d2)

. . .

...

WN

f(dn)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

1. Obtain n nodes.

2. Pack the data with an index.

3. Create couples {Node,Data}
4. Stages wait for data to process.

1 pmap(Function , Datas) ->
2 Nodes = get_nodes(length(Datas)),
3 Master = self(),
4 Indexed_data = zip(seq(1,length(Datas)),
5 Datas),
6 NDS = zip(Nodes ,Indexed_data),
7 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

1. Obtain n nodes.

2. Pack the data with an index.

3. Create couples {Node,Data}
4. Stages wait for data to process.

1 pmap(Function , Datas) ->
2 Nodes = get_nodes(length(Datas)),
3 Master = self(),
4 Indexed_data = zip(seq(1,length(Datas)),
5 Datas),
6 NDS = zip(Nodes ,Indexed_data),
7 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

1 pmap(Function , Datas) ->
2 ...
3 lists:foreach(fun({Node ,Data}) ->
4 spawn(pmap ,make_worker ,
5 [Node , Function , Data ,

Master])
6 end ,NDS),
7 collect_results(length(Datas)).

Master

pmap

p1 p2 ... p n

spawn(make_worker)

W1 W2 ... WN

spawn(Wn,generic_worker)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

1 pmap(Function , Datas) ->
2 ...
3 lists:foreach(fun({Node ,Data}) ->
4 spawn(pmap ,make_worker ,
5 [Node , Function , Data ,

Master])
6 end ,NDS),
7 collect_results(length(Datas)).

Master

pmap

p1 p2 ... p n

spawn(make_worker)

W1 W2 ... WN

spawn(Wn,generic_worker)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

Each process (thread), spawns on a different node.

1 make_worker(Node , Function , Data , Master) ->
2 spawn(Node , pmap , generic_worker ,
3 [Function ,Data ,Master]).

Function deployed on workers with its very complex wrapper...

1 generic_worker(Fun ,{Idx ,Data},Master) ->
2 Master ! {Idx ,Fun(Data)}.

All pmap implementation ∼ 50 loc
Testing/tracing infrastructure ∼ 150 loc

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

Each process (thread), spawns on a different node.

1 make_worker(Node , Function , Data , Master) ->
2 spawn(Node , pmap , generic_worker ,
3 [Function ,Data ,Master]).

Function deployed on workers with its very complex wrapper...

1 generic_worker(Fun ,{Idx ,Data},Master) ->
2 Master ! {Idx ,Fun(Data)}.

All pmap implementation ∼ 50 loc
Testing/tracing infrastructure ∼ 150 loc

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

Each process (thread), spawns on a different node.

1 make_worker(Node , Function , Data , Master) ->
2 spawn(Node , pmap , generic_worker ,
3 [Function ,Data ,Master]).

Function deployed on workers with its very complex wrapper...

1 generic_worker(Fun ,{Idx ,Data},Master) ->
2 Master ! {Idx ,Fun(Data)}.

All pmap implementation ∼ 50 loc

Testing/tracing infrastructure ∼ 150 loc

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pmap

Each process (thread), spawns on a different node.

1 make_worker(Node , Function , Data , Master) ->
2 spawn(Node , pmap , generic_worker ,
3 [Function ,Data ,Master]).

Function deployed on workers with its very complex wrapper...

1 generic_worker(Fun ,{Idx ,Data},Master) ->
2 Master ! {Idx ,Fun(Data)}.

All pmap implementation ∼ 50 loc
Testing/tracing infrastructure ∼ 150 loc

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

Pipeline: one function per stage, stream of data.

1 create(fun1 ,fun2 ,...,fn).
2 run(data1 ,data2 ,..., datan).

Erlang:

1 Pids = create([fun(X) -> X+1 end , fun(X) -> X*X end]),
2 Res = run([1,2,3,4,5], hd(Pids)).
3 [4,9,16,25,36]

1 Pids = create(duplicate(Stage_Number ,
2 (fun(X) ->
3 Matrix = duplicate2 (50 ,2.0),
4 multiply_matrix(duplicate(NCPU ,

Matrix)),
5 X
6 end)),
7 Res = run(duplicate(NData ,duplicate2(DData ,2.0)),
8 hd(Pids))

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

Pipeline: one function per stage, stream of data.

1 create(fun1 ,fun2 ,...,fn).
2 run(data1 ,data2 ,..., datan).

Erlang:

1 Pids = create([fun(X) -> X+1 end , fun(X) -> X*X end]),
2 Res = run([1,2,3,4,5], hd(Pids)).
3 [4,9,16,25,36]

1 Pids = create(duplicate(Stage_Number ,
2 (fun(X) ->
3 Matrix = duplicate2 (50 ,2.0),
4 multiply_matrix(duplicate(NCPU ,

Matrix)),
5 X
6 end)),
7 Res = run(duplicate(NData ,duplicate2(DData ,2.0)),
8 hd(Pids))

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

Pipeline: one function per stage, stream of data.

1 create(fun1 ,fun2 ,...,fn).
2 run(data1 ,data2 ,..., datan).

Erlang:

1 Pids = create([fun(X) -> X+1 end , fun(X) -> X*X end]),
2 Res = run([1,2,3,4,5], hd(Pids)).
3 [4,9,16,25,36]

1 Pids = create(duplicate(Stage_Number ,
2 (fun(X) ->
3 Matrix = duplicate2 (50 ,2.0),
4 multiply_matrix(duplicate(NCPU ,

Matrix)),
5 X
6 end)),
7 Res = run(duplicate(NData ,duplicate2(DData ,2.0)),
8 hd(Pids))

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

Pipeline: one function per stage, stream of data.

1 create(fun1 ,fun2 ,...,fn).
2 run(data1 ,data2 ,..., datan).

Erlang:

1 Pids = create([fun(X) -> X+1 end , fun(X) -> X*X end]),
2 Res = run([1,2,3,4,5], hd(Pids)).
3 [4,9,16,25,36]

1 Pids = create(duplicate(Stage_Number ,
2 (fun(X) ->
3 Matrix = duplicate2 (50 ,2.0),
4 multiply_matrix(duplicate(NCPU ,

Matrix)),
5 X
6 end)),
7 Res = run(duplicate(NData ,duplicate2(DData ,2.0)),
8 hd(Pids))

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1. Master deploy function and pid of the successor to each
stage

2. Stages wait for data to process.

Ideally:

W1 W2 ... WN

Master

(f1,pid2) (f2,pid3) (f...,pid) (fn,pid_master)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1. Master deploy function and pid of the successor to each
stage

2. Stages wait for data to process.

Ideally:

W1 W2 ... WN

Master

(f1,pid2) (f2,pid3) (f...,pid) (fn,pid_master)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1. Master deploy function and pid of the successor to each
stage

2. Stages wait for data to process.

Ideally:

W1 W2 ... WN

Master

(f1,pid2) (f2,pid3) (f...,pid) (fn,pid_master)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1. Master feeds data to the first stage.

2. Each stage applies its function to the data and sends the
result to its successor.

W1 W2
f1(d)

. . .
f2(f1(d))

WN
f(...(d)..)

Master

fn(...(d)..)d

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1. Master feeds data to the first stage.

2. Each stage applies its function to the data and sends the
result to its successor.

W1 W2
f1(d)

. . .
f2(f1(d))

WN
f(...(d)..)

Master

fn(...(d)..)d

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1. Master feeds data to the first stage.

2. Each stage applies its function to the data and sends the
result to its successor.

W1 W2
f1(d)

. . .
f2(f1(d))

WN
f(...(d)..)

Master

fn(...(d)..)d

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1. Master feeds EOF.

2. Each stage propagates EOF to its successor and exits.

W1 W2
f1(d)

. . .
f2(f1(d))

WN
f(...(d)..)

Master

fn(...(d)..)d

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1. Master feeds EOF.

2. Each stage propagates EOF to its successor and exits.

W1 W2
f1(d)

. . .
f2(f1(d))

WN
f(...(d)..)

Master

fn(...(d)..)d

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1. Master feeds EOF.

2. Each stage propagates EOF to its successor and exits.

W1 W2
f1(d)

. . .
f2(f1(d))

WN
f(...(d)..)

Master

fn(...(d)..)d

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1 create(Functions) ->
2 Nodes = get_nodes(length(Functions)),
3 NFS = zip(Nodes , Functions),
4 Pids = foldr(fun(NF, Pids) ->
5 Pid = make_worker(NF ,hd(Pids)),
6 [Pid] ++ Pids
7 end , [self()], NFS),
8 Pids.

WN

Master

pid_n

WN-1

pid_n-1

. . .

..pid..

W1

pid_1(fn,self()) (fn-1,pid_n) (f,pid_n-1) (f1,pid_2)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1. Wrapper function that is deployed on the stages.

2. Pattern matching on Data/EOF.

3. Tail-recursive call.

4. Timeout (soft real-time)

1 generic_worker(Fun ,Pid) ->
2 Timeout = 60000,%ms
3 receive
4 eof -> Pid ! eof;
5 X ->
6 Pid ! Fun(X),
7 generic_worker(Fun ,Pid)
8 after
9 Timeout -> Pid ! eof

10 end.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1 feed(Data , Pid) ->
2 foreach(fun(Elem) ->
3 Pid ! Elem ,
4 timer:sleep (10000) ,
5 end , Data),
6 Pid ! eof.

1 collect () -> collect([]).
2 collect(Acc) ->
3 receive
4 eof ->
5 reverse(Acc);
6 X ->
7 collect([X | Acc])
8 end.

1 run(Data , Head) ->
2 feed(Data , Head),
3 collect ().

pipeline implementation ∼ 70 loc
Testing/tracing infrastructure ∼ 190 loc

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1 feed(Data , Pid) ->
2 foreach(fun(Elem) ->
3 Pid ! Elem ,
4 timer:sleep (10000) ,
5 end , Data),
6 Pid ! eof.

1 collect () -> collect([]).
2 collect(Acc) ->
3 receive
4 eof ->
5 reverse(Acc);
6 X ->
7 collect([X | Acc])
8 end.

1 run(Data , Head) ->
2 feed(Data , Head),
3 collect ().

pipeline implementation ∼ 70 loc
Testing/tracing infrastructure ∼ 190 loc

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1 feed(Data , Pid) ->
2 foreach(fun(Elem) ->
3 Pid ! Elem ,
4 timer:sleep (10000) ,
5 end , Data),
6 Pid ! eof.

1 collect () -> collect([]).
2 collect(Acc) ->
3 receive
4 eof ->
5 reverse(Acc);
6 X ->
7 collect([X | Acc])
8 end.

1 run(Data , Head) ->
2 feed(Data , Head),
3 collect ().

pipeline implementation ∼ 70 loc

Testing/tracing infrastructure ∼ 190 loc

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Pipeline

1 feed(Data , Pid) ->
2 foreach(fun(Elem) ->
3 Pid ! Elem ,
4 timer:sleep (10000) ,
5 end , Data),
6 Pid ! eof.

1 collect () -> collect([]).
2 collect(Acc) ->
3 receive
4 eof ->
5 reverse(Acc);
6 X ->
7 collect([X | Acc])
8 end.

1 run(Data , Head) ->
2 feed(Data , Head),
3 collect ().

pipeline implementation ∼ 70 loc
Testing/tracing infrastructure ∼ 190 loc

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Machines Pool

The network of machines is managed by the erlang run-time.

less .hosts.erlang
’fujim1’.
’fujim2’.
...
’fujim3.cli.di.unipi.it’

Eshell V5.7.4 (abort with ^G)
(test@fujim1)1> net_adm:world(verbose).
Pinging test@fujim1 -> pong
Pinging test@fujim2 -> pong
Pinging test@fujim3 -> pong
[test@fujim1,test@fujim2,test@fujim3]

The get nodes(number) function returns a list of number active nodes, if less nodes are
available the list is redundant so that consecutive functions are deployed on the same
node (pipeline).

(test@fujim1)3> pipeline:get_nodes(5).
[test@fujim1,test@fujim2,test@fujim2,test@fujim3,test@fujim3]

Erlang library has a pool implementation.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Machines Pool

The network of machines is managed by the erlang run-time.

less .hosts.erlang
’fujim1’.
’fujim2’.
...
’fujim3.cli.di.unipi.it’

Eshell V5.7.4 (abort with ^G)
(test@fujim1)1> net_adm:world(verbose).
Pinging test@fujim1 -> pong
Pinging test@fujim2 -> pong
Pinging test@fujim3 -> pong
[test@fujim1,test@fujim2,test@fujim3]

The get nodes(number) function returns a list of number active nodes, if less nodes are
available the list is redundant so that consecutive functions are deployed on the same
node (pipeline).

(test@fujim1)3> pipeline:get_nodes(5).
[test@fujim1,test@fujim2,test@fujim2,test@fujim3,test@fujim3]

Erlang library has a pool implementation.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Machines Pool

The network of machines is managed by the erlang run-time.

less .hosts.erlang
’fujim1’.
’fujim2’.
...
’fujim3.cli.di.unipi.it’

Eshell V5.7.4 (abort with ^G)
(test@fujim1)1> net_adm:world(verbose).
Pinging test@fujim1 -> pong
Pinging test@fujim2 -> pong
Pinging test@fujim3 -> pong
[test@fujim1,test@fujim2,test@fujim3]

The get nodes(number) function returns a list of number active nodes, if less nodes are
available the list is redundant so that consecutive functions are deployed on the same
node (pipeline).

(test@fujim1)3> pipeline:get_nodes(5).
[test@fujim1,test@fujim2,test@fujim2,test@fujim3,test@fujim3]

Erlang library has a pool implementation.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Pmap intuition

Pmap code

Pipeline Intuition

Pipeline code

Machines Pool

Benchmarks

Machines Pool

The network of machines is managed by the erlang run-time.

less .hosts.erlang
’fujim1’.
’fujim2’.
...
’fujim3.cli.di.unipi.it’

Eshell V5.7.4 (abort with ^G)
(test@fujim1)1> net_adm:world(verbose).
Pinging test@fujim1 -> pong
Pinging test@fujim2 -> pong
Pinging test@fujim3 -> pong
[test@fujim1,test@fujim2,test@fujim3]

The get nodes(number) function returns a list of number active nodes, if less nodes are
available the list is redundant so that consecutive functions are deployed on the same
node (pipeline).

(test@fujim1)3> pipeline:get_nodes(5).
[test@fujim1,test@fujim2,test@fujim2,test@fujim3,test@fujim3]

Erlang library has a pool implementation.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks

All benchmarks were run with dummy code whose only purpose
was to measure CPU/Network performance under different
workload.

The D value tunes the load on Network transmission.
The C value tunes the CPU workload.

g ∼ C

D

Hypothesis:
Each node perform the exact same function, on data of the same
size. D and C values are independent.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks

All benchmarks were run with dummy code whose only purpose
was to measure CPU/Network performance under different
workload.

The D value tunes the load on Network transmission.

The C value tunes the CPU workload.

g ∼ C

D

Hypothesis:
Each node perform the exact same function, on data of the same
size. D and C values are independent.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks

All benchmarks were run with dummy code whose only purpose
was to measure CPU/Network performance under different
workload.

The D value tunes the load on Network transmission.
The C value tunes the CPU workload.

g ∼ C

D

Hypothesis:
Each node perform the exact same function, on data of the same
size. D and C values are independent.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks

All benchmarks were run with dummy code whose only purpose
was to measure CPU/Network performance under different
workload.

The D value tunes the load on Network transmission.
The C value tunes the CPU workload.

g ∼ C

D

Hypothesis:
Each node perform the exact same function, on data of the same
size. D and C values are independent.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks

All benchmarks were run with dummy code whose only purpose
was to measure CPU/Network performance under different
workload.

The D value tunes the load on Network transmission.
The C value tunes the CPU workload.

g ∼ C

D

Hypothesis:
Each node perform the exact same function, on data of the same
size. D and C values are independent.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

The Inviso framework provided with Erlang was used to trace:

1. function calls, returns

2. messages sent, received

n 0

n 0

n 1

n 1

...

. . .

n

n

Inviso

Data, once analyzed, contained precise measure (nanoseconds) of Cpu
times and Communication times of every node.
Inviso proved to be very powerfull, very difficult to use, and eventually
very buggy :P

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

The Inviso framework provided with Erlang was used to trace:

1. function calls, returns

2. messages sent, received

n 0

n 0

n 1

n 1

...

. . .

n

n

Inviso

Data, once analyzed, contained precise measure (nanoseconds) of Cpu
times and Communication times of every node.
Inviso proved to be very powerfull, very difficult to use, and eventually
very buggy :P

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

The Inviso framework provided with Erlang was used to trace:

1. function calls, returns

2. messages sent, received

n 0

n 0

n 1

n 1

...

. . .

n

n

Inviso

Data, once analyzed, contained precise measure (nanoseconds) of Cpu
times and Communication times of every node.

Inviso proved to be very powerfull, very difficult to use, and eventually
very buggy :P

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

The Inviso framework provided with Erlang was used to trace:

1. function calls, returns

2. messages sent, received

n 0

n 0

n 1

n 1

...

. . .

n

n

Inviso

Data, once analyzed, contained precise measure (nanoseconds) of Cpu
times and Communication times of every node.
Inviso proved to be very powerfull,

very difficult to use, and eventually
very buggy :P

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

The Inviso framework provided with Erlang was used to trace:

1. function calls, returns

2. messages sent, received

n 0

n 0

n 1

n 1

...

. . .

n

n

Inviso

Data, once analyzed, contained precise measure (nanoseconds) of Cpu
times and Communication times of every node.
Inviso proved to be very powerfull, very difficult to use,

and eventually
very buggy :P

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

The Inviso framework provided with Erlang was used to trace:

1. function calls, returns

2. messages sent, received

n 0

n 0

n 1

n 1

...

. . .

n

n

Inviso

Data, once analyzed, contained precise measure (nanoseconds) of Cpu
times and Communication times of every node.
Inviso proved to be very powerfull, very difficult to use, and eventually
very buggy :P

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

Tell Inviso which node to trace and how:

1 trace () ->
2 inviso:start(),
3 inviso:add_nodes(Nodes ,mytag ,[]),
4 TracedList = lists:map(fun(Elem) ->
5 {Elem ,[{trace ,{relayer ,node()}}]} end , OtherNodes)

,
6 inviso:init_tracing(TracedList ++ [
7 {node(),
8 [{trace ,{fun filter/2,[]}}]}
9]),

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

Alternatives

I Log all trace events to file:

1 inviso:init_tracing([{client_node (),
2 [{trace ,{file ,"client_log"}}]},
3 {server_node (),
4 [{trace ,{file ,"server_log"}}]}])

.

they can be later collected and merged.

I Display all trace events in the shell of the node where they occur:

1 inviso:init_tracing([{client_node (),
2 [{trace ,collector}]},
3 {server_node (),
4 [{trace ,collector}]}]).

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

Alternatives

I Log all trace events to file:

1 inviso:init_tracing([{client_node (),
2 [{trace ,{file ,"client_log"}}]},
3 {server_node (),
4 [{trace ,{file ,"server_log"}}]}])

.

they can be later collected and merged.

I Display all trace events in the shell of the node where they occur:

1 inviso:init_tracing([{client_node (),
2 [{trace ,collector}]},
3 {server_node (),
4 [{trace ,collector}]}]).

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

Tell Inviso what needs to be traced:

1 inviso:tpl(OtherNodes ,pipeline ,funcfunc ,’_’,
2 [{’_’,[],[{return_trace}]}]),
3 inviso:tf(OtherNodes ,all ,[send ,’receive ’]),
4 inviso:tf(all ,[call ,timestamp]).

alternatives:

I send

I receive

I procs

I call

I return to

I running : Trace scheduling of processes.

I exiting

I garbage collection

I timestamp

I cpu timestamp

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso

Tell Inviso what needs to be traced:

1 inviso:tpl(OtherNodes ,pipeline ,funcfunc ,’_’,
2 [{’_’,[],[{return_trace}]}]),
3 inviso:tf(OtherNodes ,all ,[send ,’receive ’]),
4 inviso:tf(all ,[call ,timestamp]).

alternatives:

I send

I receive

I procs

I call

I return to

I running : Trace scheduling of processes.

I exiting

I garbage collection

I timestamp

I cpu timestamp

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso - filter()

Define a function to treat received data:
Function calls:

1 filter(X,CList) ->
2 case X of
3 {trace_ts ,Pid ,call ,{M,F,_A},{MgS ,S,McS}} ->
4 Call = {{M,F,Pid} ,(McS+(S*1000000)+
5 (MgS *1000000000000))},
6 CList ++ [Call];
7 {trace_ts ,Pid ,return_from ,{M,F,_A},_R,{MgS ,S,McS}} ->
8 FTime = (McS+(S*1000000)+
9 (MgS *1000000000000)),

10 case lists:keysearch({M,F,Pid},1,CList) of
11 {value ,{_,STime}} ->
12 ETime = FTime - STime ,
13 log({node ,Pid ,ETime});
14 _ -> ok
15 end ,
16 lists:keydelete({M,F,Pid},1,CList);
17 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso - filter()

Define a function to treat received data:
Messages:

1 {trace_ts ,Pid ,send ,Msg ,Dest ,{MgS ,S,McS}} ->
2 Time = McS+(S*1000000) +(MgS *1000000000000) ,
3 case Msg of
4 eof -> ok;
5 [[F|_]|_] when is_number(F) ->
6 log({send ,Pid ,Time});
7 _ -> ok
8 end ,
9 CList;

10 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso - raw log

Raw log generateb by Inviso:

{rec, "<9434.102.0>", 1268574271799829}.

{rec, "<9434.102.0>", 1268574273803683}.

{rec, "<9434.102.0>", 1268574275807627}.

{node, "<9434.102.0>", 19354161}.

{send, "<9434.102.0>", 1268574287147508}.

{rec, "<9471.101.0>", 1268574284572751}.

{node, "<9471.101.0>", 18370486}.

{send, "<9471.101.0>", 1268574302945083}.

{rec, "<9472.99.0>", 1268574303184890}.

{node, "<9434.102.0>", 19671653}.

{send, "<9434.102.0>", 1268574306867066}.

{rec, "<9471.101.0>", 1268574304291474}.

...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso - analyze()

Pass the log through analyze() to extract needed info:

1 analyze(Pids ,File) when is_list(Pids)->
2 {ok, Log} = file:consult("log.txt"),
3 SendList2 = lists:filter(fun({Type ,Pid ,Time}) ->
4 case Type of
5 send -> true;
6 _ -> false
7 end
8 end ,Log),
9 {L11 ,L12 ,L13} = lists:unzip3(SendList2),

10 SendList= lists:keysort(1,lists:zip(L12 ,L13)),
11 ...
12 RecList= lists:keysort(1,lists:zip(L22 ,L23)),
13 ...
14 NodeList= lists:keysort(1,lists:zip(L32 ,L33)),
15 CPUTimes = ...
16 {ok, FileDescriptor} = file:open(File , [append]),
17 io:format(FileDescriptor , "#service time: ~p~n",
18 [max(CPUTimes)/1000000]),
19 ...
20 file:close(FileDescriptor).

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso - log

Refined log for pmap:

{dimData, "nData", nCPU}.

{1500000, "2", 160}.

{node, "<3961.15734.0>", 50637248}.

{node, "<3970.10574.0>", 50419248}.

{total, "time", nmachines}.

{total, "54107364", 2}.

Refined log for pipeline:

#nStages nCPU nData nData

#3 10 50 5

#PIDS: ["<3960.85.0>","<3962.85.0>","<3961.85.0>"]

#service time: 1.915271

1 1.915271 1.892735 1.899414 1.884896 1.848452

2 1.856185 1.842149 1.839809 1.853133 1.85122

3 1.866492 1.848686 1.830319 1.850508 1.842933

no network data ;(

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Benchmarks - Inviso - log

Refined log for pmap:

{dimData, "nData", nCPU}.

{1500000, "2", 160}.

{node, "<3961.15734.0>", 50637248}.

{node, "<3970.10574.0>", 50419248}.

{total, "time", nmachines}.

{total, "54107364", 2}.

Refined log for pipeline:

#nStages nCPU nData nData

#3 10 50 5

#PIDS: ["<3960.85.0>","<3962.85.0>","<3961.85.0>"]

#service time: 1.915271

1 1.915271 1.892735 1.899414 1.884896 1.848452

2 1.856185 1.842149 1.839809 1.853133 1.85122

3 1.866492 1.848686 1.830319 1.850508 1.842933

no network data ;(

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Erlang Overhead
Al test were performed with lists of floats on 32bit single-core
machines (fujim).
List of N floats = N ∗ (1 + 4words) ∗ 4bytes = N ∗ 20bytes.
Erlang introduces an overhead of 20% for data structures.
Overhead due to byte code transfer should be negligible for our
applications.

Average Roud Trip Time tested on 10 machines:
Data Dim Est Dim RTT(sec) MBs

matrix 2000 76 MB 7.876 19
matrix 1000 19 MB 1.895 21
matrix 300 1757 KB 0.184 18
matrix 200 781 KB 0.083 18
matrix 150 439 KB 0.046 18
matrix 100 195 KB 0.020 19
matrix 50 48 KB 0.008 11

lists 1500000 28 MB 3.056 18

Communication Speed ≈ 20 MB/sec ⇒ 160Mb/s
Very impressive on a 100 Mb/s network :)

Tried with matrix of 2.0 or with diffent values.

No tcpdump/tshark/wireshark so the mistery remains.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Erlang Overhead
Al test were performed with lists of floats on 32bit single-core
machines (fujim).
List of N floats = N ∗ (1 + 4words) ∗ 4bytes = N ∗ 20bytes.
Erlang introduces an overhead of 20% for data structures.
Overhead due to byte code transfer should be negligible for our
applications.

Average Roud Trip Time tested on 10 machines:
Data Dim Est Dim RTT(sec) MBs

matrix 2000 76 MB 7.876 19
matrix 1000 19 MB 1.895 21
matrix 300 1757 KB 0.184 18
matrix 200 781 KB 0.083 18
matrix 150 439 KB 0.046 18
matrix 100 195 KB 0.020 19
matrix 50 48 KB 0.008 11

lists 1500000 28 MB 3.056 18

Communication Speed ≈ 20 MB/sec ⇒ 160Mb/s
Very impressive on a 100 Mb/s network :)
Tried with matrix of 2.0 or with diffent values.

No tcpdump/tshark/wireshark so the mistery remains.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Erlang Overhead
Al test were performed with lists of floats on 32bit single-core
machines (fujim).
List of N floats = N ∗ (1 + 4words) ∗ 4bytes = N ∗ 20bytes.
Erlang introduces an overhead of 20% for data structures.
Overhead due to byte code transfer should be negligible for our
applications.

Average Roud Trip Time tested on 10 machines:
Data Dim Est Dim RTT(sec) MBs

matrix 2000 76 MB 7.876 19
matrix 1000 19 MB 1.895 21
matrix 300 1757 KB 0.184 18
matrix 200 781 KB 0.083 18
matrix 150 439 KB 0.046 18
matrix 100 195 KB 0.020 19
matrix 50 48 KB 0.008 11

lists 1500000 28 MB 3.056 18

Communication Speed ≈ 20 MB/sec ⇒ 160Mb/s
Very impressive on a 100 Mb/s network :)
Tried with matrix of 2.0 or with diffent values.

No tcpdump/tshark/wireshark so the mistery remains.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap Benchmark

Parallel map was tested with simple lists of floats for finer grained results.

1. a list of D floats is splitted into N sublists.

2. on each element is applied C times the erfc function.

3. the same value received is sent back.

1 test(DimData , NData , NCPU) ->
2 ...
3 Data = [list od DimData is splitted to NData]
4 pmap(fun(Vect) ->
5 map(fun(X) ->
6 foreach(fun(_) ->
7 math:erf(X)
8 end ,
9 seq(1,NCPU)),

10 X
11 end , Vect)
12 end , Data),
13 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap Benchmark

Parallel map was tested with simple lists of floats for finer grained results.

1. a list of D floats is splitted into N sublists.

2. on each element is applied C times the erfc function.

3. the same value received is sent back.

1 test(DimData , NData , NCPU) ->
2 ...
3 Data = [list od DimData is splitted to NData]
4 pmap(fun(Vect) ->
5 map(fun(X) ->
6 foreach(fun(_) ->
7 math:erf(X)
8 end ,
9 seq(1,NCPU)),

10 X
11 end , Vect)
12 end , Data),
13 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap Benchmark

Parallel map was tested with simple lists of floats for finer grained results.

1. a list of D floats is splitted into N sublists.

2. on each element is applied C times the erfc function.

3. the same value received is sent back.

1 test(DimData , NData , NCPU) ->
2 ...
3 Data = [list od DimData is splitted to NData]
4 pmap(fun(Vect) ->
5 map(fun(X) ->
6 foreach(fun(_) ->
7 math:erf(X)
8 end ,
9 seq(1,NCPU)),

10 X
11 end , Vect)
12 end , Data),
13 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap Benchmark

Parallel map was tested with simple lists of floats for finer grained results.

1. a list of D floats is splitted into N sublists.

2. on each element is applied C times the erfc function.

3. the same value received is sent back.

1 test(DimData , NData , NCPU) ->
2 ...
3 Data = [list od DimData is splitted to NData]
4 pmap(fun(Vect) ->
5 map(fun(X) ->
6 foreach(fun(_) ->
7 math:erf(X)
8 end ,
9 seq(1,NCPU)),

10 X
11 end , Vect)
12 end , Data),
13 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap best sequential

1 seque(DimData , NCPU) ->
2 Data = duplicate(DimData ,2.0),
3 {Time ,Res} =
4 tc(lists ,map ,
5 [fun(X) ->
6 foreach(fun(_) ->
7 erf(X)
8 end ,
9 seq(1,NCPU)),

10 X
11 end , Data]),
12 Time.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Notice
the fall on 10 machines...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Notice
the fall on 10 machines...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Much
better :)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pmap

Much
better :)

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline Benchmark

A small library to handle matrix multiplication was implemented:

1. generate 50x50 matrix with the same value 2.0.: duplicate2(50,2.0)

2. multiply a list of matrices: multiply matrix([M1,M2,...,Mn])

3. C power: multiply matrix(duplicate(C,duplicate2(D,X)))

1 test(NStages ,NCPU ,DData ,NData) ->
2 ...
3 Pids = create(duplicate(NStages ,
4 fun(X) ->
5 Matrix = duplicate2 (50 ,2.0),
6 multiply_matrix(duplicate(NCPU ,Matrix)),
7 X
8 end)),
9 ...

10 Res = run(duplicate(NData , duplicate2(DData ,2.0)),
11 hd(Pids)),
12 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline Benchmark

A small library to handle matrix multiplication was implemented:

1. generate 50x50 matrix with the same value 2.0.: duplicate2(50,2.0)

2. multiply a list of matrices: multiply matrix([M1,M2,...,Mn])

3. C power: multiply matrix(duplicate(C,duplicate2(D,X)))

1 test(NStages ,NCPU ,DData ,NData) ->
2 ...
3 Pids = create(duplicate(NStages ,
4 fun(X) ->
5 Matrix = duplicate2 (50 ,2.0),
6 multiply_matrix(duplicate(NCPU ,Matrix)),
7 X
8 end)),
9 ...

10 Res = run(duplicate(NData , duplicate2(DData ,2.0)),
11 hd(Pids)),
12 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline Benchmark

A small library to handle matrix multiplication was implemented:

1. generate 50x50 matrix with the same value 2.0.: duplicate2(50,2.0)

2. multiply a list of matrices: multiply matrix([M1,M2,...,Mn])

3. C power: multiply matrix(duplicate(C,duplicate2(D,X)))

1 test(NStages ,NCPU ,DData ,NData) ->
2 ...
3 Pids = create(duplicate(NStages ,
4 fun(X) ->
5 Matrix = duplicate2 (50 ,2.0),
6 multiply_matrix(duplicate(NCPU ,Matrix)),
7 X
8 end)),
9 ...

10 Res = run(duplicate(NData , duplicate2(DData ,2.0)),
11 hd(Pids)),
12 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline Benchmark

A small library to handle matrix multiplication was implemented:

1. generate 50x50 matrix with the same value 2.0.: duplicate2(50,2.0)

2. multiply a list of matrices: multiply matrix([M1,M2,...,Mn])

3. C power: multiply matrix(duplicate(C,duplicate2(D,X)))

1 test(NStages ,NCPU ,DData ,NData) ->
2 ...
3 Pids = create(duplicate(NStages ,
4 fun(X) ->
5 Matrix = duplicate2 (50 ,2.0),
6 multiply_matrix(duplicate(NCPU ,Matrix)),
7 X
8 end)),
9 ...

10 Res = run(duplicate(NData , duplicate2(DData ,2.0)),
11 hd(Pids)),
12 ...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline

Feeding is too fast, in this case 2 sec.
Inter departure time TP � TS

Tsα: 28.244
C=150 D=50

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline Benchmark: head is the bottleneck

Feeding is close to average Service Time: 27 sec.

Tsα: 27.374
C=150 D=50

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline

C=50 D=50

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline - Tsi

C=50 D=150

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline - Tsi

C=50 D=200

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline - Tsi

C=50 D=1000

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Pipeline - Looking for the unbalanced case

TA = average(InterArrivalTimes)
TS = max{Tsi}

C D TA TS ρ
50 50 9.199 9.211453 1.00
50 150 9.629 9.530386 0.98
50 200 9.868 9.581177 0.97
50 300 10.069 9.799503 0.97
50 1000 19.452 12.882535 0.66

matrix of 1000 floats ∼ 19MB ⇒ RTT: 1.895 sec.

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Going further

I implement other skeletons:
I farm as a general case for pmap
I fold as a particular case for pipeline

I exploit higher order
I compose skeletons: pmap(fun(X) -> pmap(X) end,

[[1..3000],[1..2000]])

I do things the right way: erlang pool manager

I fault tolerance: handle exceptions

I learn from errors: autonomic first-stage pipeline

I make ports for dusty deck code

I (lot further) make a manager with inviso/heartbeat...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Going further

I implement other skeletons:
I farm as a general case for pmap
I fold as a particular case for pipeline

I exploit higher order
I compose skeletons: pmap(fun(X) -> pmap(X) end,

[[1..3000],[1..2000]])

I do things the right way: erlang pool manager

I fault tolerance: handle exceptions

I learn from errors: autonomic first-stage pipeline

I make ports for dusty deck code

I (lot further) make a manager with inviso/heartbeat...

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Going further

Erlang as a didactic/specification language:

I high level components: pmap → pipeline → farm
I write application specification with full abstraction

I middle level: my little framework
I write framework with erlang abstraction

(send/receive/spawn...)

I TCP/UDP, ssh, posix ...
I write framework with posix abstraction
I only short-coming is no shared memory support

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Going further

Erlang as a didactic/specification language:

I high level components: pmap → pipeline → farm
I write application specification with full abstraction

I middle level: my little framework
I write framework with erlang abstraction

(send/receive/spawn...)

I TCP/UDP, ssh, posix ...
I write framework with posix abstraction
I only short-coming is no shared memory support

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Going further

Erlang as a didactic/specification language:

I high level components: pmap → pipeline → farm
I write application specification with full abstraction

I middle level: my little framework
I write framework with erlang abstraction

(send/receive/spawn...)

I TCP/UDP, ssh, posix ...
I write framework with posix abstraction

I only short-coming is no shared memory support

Erlang as a framework for
parallel/distributed

programming.

M. Stronati

Introduction

Language

Skeletons

Benchmarks

Inviso

Network

Pmap Benchmarks

Pipeline Benchmark

Going further

Erlang as a didactic/specification language:

I high level components: pmap → pipeline → farm
I write application specification with full abstraction

I middle level: my little framework
I write framework with erlang abstraction

(send/receive/spawn...)

I TCP/UDP, ssh, posix ...
I write framework with posix abstraction
I only short-coming is no shared memory support

	Introduction
	Language
	History
	Higher Order
	Types
	Concurrent/Distributed
	Concurrent/Distributed
	Hot Code

	Skeletons
	Pmap intuition
	Pmap code
	Pipeline Intuition
	Pipeline code
	Machines Pool

	Benchmarks
	Inviso
	Network
	Pmap Benchmarks
	Pipeline Benchmark

