
11/05/2010

1

Sviluppo di Software Sicuro - S3

Informed design

Corso di Laurea Magistrale in

Sicurezza Informatica: Infrastrutture e Applicazioni

Università di Pisa – Polo di La Spezia

C. Montangero

Anno accademico 2009/10

Obiettivi di qualità di un progetto

• EALCH: encapsulation, abstraction, loose

coupling, cohesion, hierarchy

• Encapsulation

– the clear separation of specification from

implementation

– “contract model” of programming

Obiettivi di qualità di un progetto (2)

• Abstraction
– a necessary component of encapsulation

– it allows stripping away (ignore) certain levels of detail
which is encapsulated in the object

– “information hiding” is frequently used in this context
• This term is somewhat inappropriate:

• information, by definition, informs. We cannot reason in the
absence of information;

• however, we can ensure that our reasoning takes place at an
appropriate level of abstraction

• Hiding unnecessary detail to focus on the essential properties of an
object.

– SPARK annotations are essential in this respect
• particularly the own variable clause, which reveals the presence of

“state” in a package without revealing unnecessary details

11/05/2010

2

Obiettivi di qualità di un progetto (3)

• Loose coupling
– a measure of the connections between objects

• Highly coupled objects interact in ways that make their separate
modification difficult

• high levels of coupling arise when abstractions are poor and
encapsulation inadequate

– SPARK provides a simple and clear distinction:
• the appearance of a package name only as a prefix in an inherits

annotation represents weak coupling (use of a service)

• its appearance in a global or derives annotation indicates strong
coupling (sharing of data)

– Excessive coupling is revealed by the size and complexity
SPARK’s derives and global annotations

– The goal of optimising information flow is equivalent to
achieving loose coupling

Obiettivi di qualità di un progetto (4)

• Cohesion

– Whereas coupling is measured between objects,

cohesion is a property of an object.

– it is measure of focus or singleness of purpose:

• For example, a car has both door handles and pistons
but we would not expect to find both represented by a
single software object; If they were, we would not have
high cohesion:

• modifying the software to support a 2-door rather than
4-door model (or to replace a straight 4 with a V8
engine) would involve changing rather unexpected
parts of the design

Obiettivi di qualità di un progetto (5)

• Hierarchy

– Here we recognise that in the real-world objects have
exhibit hierarchy.

– Certain objects are contained inside others and
cannot be reached directly.

• When we approach a car we can grasp a door handle but not
a piston: the latter is inside the engine object which is itself
inside the car.

– a clear object hierarchy

• encouraged and checked by the rules of SPARK

• contributes to the goal of keeping the flow of information
under control — loose coupling

11/05/2010

3

Elementi base di progetto

• INFORMED designs use

– three key building blocks

• main program

– the top-level, entry point controlling the behaviour of a system

• variable packages

– they contain “state” as revealed by an own variable annotation

• type packages

– they provide template from which objects can later be formed

– plus two auxiliary ones

• utility packages

– they provide shared services to the main components

• boundary variables

– they provide interfaces for all the communication across the system boundary

Main program

• The control procedure is likely to be
decomposed into several smaller
procedures

• Aim: make each such decomposed
procedure responsible for a single “mode”
of the system’s behaviour

• For example, in a cycle computer there are
separate modes for programming the unit
– with the size of the bicycle’s wheel

– for normal operation

• cohesion and clear and useful annotations

with A, B, C;
--# inherit A, B, C, D;
--# main_program;
procedure Main
--# global in out A.State, B.State, ...
--# derives ...
is
procedure Initialize;
....
begin -- Main
Initialize;
loop
ControlProcedure;

end loop;
end Main;

Main

Variable Packages

• names a container
which can contain
values of a certain
shape upon which
certain operations
are possible

• like a variable

• cannot be passed
as argument

package Stack
--# own State;
is
procedure Clear;
--# global out State;
--# derives State from ;
procedure Push(X : in Integer);
--# global in out State;
--# derives State from State, X;
procedure Pop(X : out Integer);
--# global in out State;
--# derives X, State from State;
end Stack;

Stack

11/05/2010

4

Variable Packages (2)

• SPARK’s own variable annotation gives a name to the encapsulated
state

• to be use in annotations to clarify the intended use

• abstraction can be maintained because no details of the internal
structure of the state need be revealed

• Hierarchy is facilitated because SPARK refinement rules allow the
abstract state, to represent a number of more detailed state items
which are conceptually inside the object

• E.g., a car object could contain an engine object which might
contain a number of piston objects

• At the most concrete level will be a number of Ada primitive objects

• SPARK 95 private child packages allow the logical nesting or
embedding of variable packages without the need to embed
physically the packages that represent them

Type Packages

• type packages do not have state
nor own annotation

• roughly equivalent to a class or an
ADT

• increasing level of abstraction and
encapsulation:
– Ada type

– private type

– limited private type

• Variables of the types declared in
type packages can be declared at
the point of use and passed as
parameters
– reduction of information flow and

coupling

package Stack
is
type T is private;
procedure Clear(S : out T);
--# derives S from ;
procedure Push(S : in out T;

X : in Integer);
--# derives S from S, X;
procedure Pop(S : in out T;

X : out Integer);
--# derives X, S from S;
private
-- full SPARK declaration of
-- type T would go here

end Stack;

Stack

Utility Packages

• Never contain
– state variables (they are not variable packages)

– exported type declaration (they are not type packages)

• Define operations which
– affect or use more than one variable/type package

– would not be appropriate to consider part of one or
another

• Given type packages representing “man” and “woman”
– the operation “marry” should probably operate on one of

each and would therefore need to be an utility package

– Placing the marry operation in either the man or woman
type package would suggest a false hierarchy and certainly
be politically incorrect!

Family

11/05/2010

5

Boundary Variables

• Variable packages that

– provide interfaces between the software

functionality described by the INFORMED design

and elements outside it with which it must

communicate

– with some kind of hardware sensor or actuator; or

an “API” of some library or co-operating software

system

Sensor

Boundary Variable Abstraction Layers

• An abstraction layer between
– the boundary variables of a system and

– their users (other variable packages or the main)

• is appropriate where direct use of the boundary
variables would allow too much detail to become
visible in higher level SPARK annotations

• The abstraction may hide
– that more than one boundary variable is involved in

providing the abstract inputs

– some other processing such as calibration that is taking
place

AbsSensor
Sensor

Esempio: pulsanti di controllo

• cycle computer

• abstraction of two control buttons
– Reset and Mode

– obtained from a single external source
• Controls.State

package Controls
--# own in State;
is
type Buttons is (Pressed, NotPressed);
procedure ReadReset(Setting : out Buttons);
--# global in State;
--# derives Setting from State;
procedure ReadMode(Setting : out Buttons);
--# global in State;
--# derives Setting from State;
end Controls;

11/05/2010

6

Realizzazione dell'astrazione

• Ciascun bottone ha

la sua variabile

volatile

--# inherit Controls;
private package Controls.Reset
--# own in State;
is
procedure Read(Setting :

out Controls.Buttons);
--# global in State;
--# derives Setting from State;
end Controls.Reset;

with Controls.Reset, Controls.Mode;
package body Controls
--# own State is in Controls.Reset.State,
--# in Controls.Mode.State;
is
procedure ReadReset(Setting : out Buttons)
--# global in Reset.State;
--# derives Setting from Reset.State;
is
begin
Reset.Read(Setting);
end ReadReset;

Controls

Reset Mode

Coupling (visually)

• package name only as a prefix in an inherits

annotation represents weak coupling (use of a

service)

• in a global or derives annotation indicates

strong coupling (sharing of data)

Processo

1. Identification of

1. the system boundary, inputs and outputs

2. Identification of the SPARK boundary

1. Select a SPARK boundary within the overall system
boundary; this defines the parts of the system that
will be modelled and coded in SPARK and which will
be subject to SPARK Examination

2. Define boundary variables to give controlled
interfaces across the SPARK boundary annotated in
problem domain terms.

3. Consider adding boundary abstraction layers

11/05/2010

7

Processo (2)

3. Identification and localization of system state
1. Identify the essential state of the system

• what must be stored?

2. Decide how to express the annotations of the main program
• Any state outside the main program will appear in its annotations,

any inside will not

3. Assess where state should be located and whether it should be
implemented

• as variable packages or

• instances of type packages

4. Identify any natural state hierarchies and use SPARK
refinement to model them. Introduce utility layers where
appropriate.

5. Test to see if the resulting provisional design is a loop-free
partial ordering of packages and produces a logical and
minimal flow of information. Backtrack as necessary.

Processo (3)

4. Handling initialization of state.

1. Consider how state will be initialized. Does this affect
the location choices made?

2. Examine and flow analyse the system framework.

5. Implementing the internal behaviour of
components.

1. Implement the chosen variable packages and type
packages using top-down refinement with constant
cross-checking against the design using the Examiner.

2. Repeat these design steps for any identified
subsystems.

Inizializzazione dello stato

• all'elaborazione
– prima dell'inizio del main

– (parliamo dello stato delle
variabili package)

• package elaboration part
(i.e. between the begin
and end of the package’s
body).

• By providing an initial
value at the point of the
variable’s declaration:
– X : Integer := 0;

– SPARK limits!

• Implicit initialization by
the external environment.
– this is the case with

boundary variables

11/05/2010

8

Inizializzazione dello stato (2)

• durante l'esecuzione del
main
– The variable does not have a

valid value prior to execution
of the statement concerned.

• By an assignment
statement.
– For concrete Ada variables

any suitable expression may
be assigned;

– for variables of type packages
a suitable deferred constant
or function call will be
required

• By a call to a procedure
– which exports (and does not

import) the variable
concerned

– this is the only way of
initializing a variable of a type
package implemented as an
Ada limited private type

Inizializzazione: esempio

• Consider a tiny SPARK program that

– transfers data from boundary variable “Input” to

– boundary variable “Output”

– via a global variable package “Queue”

--# derives Output.State,

--# Queue.State

--# from Queue.State,

--# Input.State;

Main

Input Output

Queue

Già inizializzata in elaborazione

– devo chiamare subito enqueue che

--# derives State from State;

e quindi il main:

--# derives Output.State,

--# Queue.State

--# from Queue.State,

--# Input.State;

Main

Input Output

Queue

11/05/2010

9

Da inizializzare

– devo chiamare prima Clear che

--# derives State from ;

e quindi il main non dipende più dallo stato iniziale della
coda

--# derives Output.State,

--# Queue.State

--# from Input.State;

Main

Input Output

Queue

Se la coda diventa locale

– il main non dipende più dalla coda

– l'inizializzazione vien fatta dal 'costruttore'

• Esempio di individuazione del flusso

dell'informazione (vedi compilatore)

--# derives Output.State

--# from Input.State;

Main

Input Output

Queue

Esercizio

• Boiler Water Contents

• Requirements

• A device is needed to monitor the depth of water in a
boiler vessel. Two sensors are provided “water low”
and “water high”. When the water is low a fill valve is
to be opened. When the water is high a drain valve is
to be opened. When neither high nor low signal is
present both valves are closed. To prevent the valves
chattering some delay of operation is required with the
valves only operating after 10 successive, consistent
signals have been received from the associated sensor.

