

Tokeneer ID Station
INFORMED Design

 S.P1229.50.2
Issue: 1.2
Status: Definitive
19th August 2008

 Originator

 Janet Barnes (Project Manager)

 Approver

 David Cooper (Technical Authority)

 Copies to:

 NSA Praxis High Integrity Systems
 Project File

 SPRE Inc

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 2 of 68

Contents

1 Introduction 3
1.1 Background 3
1.2 Purpose 3
1.3 Scope 3
1.4 Notation 4

2 INFORMED Design 6
2.1 Identification of System Boundary 6
2.2 Identification of the SPARK boundary 7
2.3 Identification and Localisation of state 9
2.4 Initialisation of State 18
2.5 Other design issues 20
2.6 The Second SPARK Subsystem 28

3 Package Summary 29
3.1 Types Packages 29
3.2 Variable Packages 42
3.3 Utility Layers 63

Document Control and References 68
Changes history 68
Changes forecast 68
Document references 68

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 3 of 68

1 Introduction

1.1 Background

In order to demonstrate that developing highly secure systems to the level of rigour required by the
higher assurance levels of the Common Criteria is possible, the NSA has asked Praxis High Integrity
Systems to undertake a research project to develop a high integrity variant of an existing secure system
(the Tokeneer System) in accordance with their own high-integrity development process. The component
of the Tokeneer System that is to be redeveloped is the core functionality of the Token ID Station (TIS).
This development work will then be used to show the security community that it is possible to develop
secure systems rigorously in a cost-effective manner.

1.2 Purpose

The purpose of this design document is to present aspects of the design process that are not covered by
the Formal Design. These are non-functional issues concerned with the mechanism by which the system
should be implemented. This document does not present a functional description of the core TIS
software; the reader is referred to the Formal Design [2] for functional information.

1.3 Scope

This document presents the INFORMED design for the high integrity TIS core development. This
document also details the architectural design issues not covered by the Formal Design.

In particular it derives the software architecture in terms of the Ada packages that make up the system,
the public operations offered by each of these packages, and their relationship to the Formal Design.

This document also addresses other technical design issues not covered in the formal model, including
managing persistent data, file formats and file locations.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 4 of 68

1.4 Abbreviations
CA Certification Authority

CR Carriage Return character

I&A Identification and Authentication

LF Line Feed character

SPARK SPADE Ada Kernel (Analysable Ada subset from Praxis High Integrity
Systems)

TIS Token ID Station

1.5 Notation

Within the informed design there are several diagrams showing the structure of the system. Within
these diagrams the following notation is used.

Type package

Variable package

Strong Inheritance

main program

Utility layer

Boundary Variable

Weak Inheritance

Figure 1 : Key to INFORMED Notation

A Type package is a package that introduces types and possibly operations on those types but does not
introduce persistent state to the system.

A variable package is a package that introduces global variables (persistent state) to the system along
with operations that manipulate that state.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 5 of 68

A utility layer is a package that introduces operations to the system but does not introduce state or
types.

A boundary variable marks the point of introduction into the SPARK environment of an external variable
to the system; this represents either an import into the SPARK system or an export from the SPARK
system. Boundary variables are used to represent real world entities.

The main program is the point of control of the SPARK system.

Strong Inheritance represents use, either directly or indirectly of the global variables of a package.

Weak Inheritance represents use of types and utilities provided by a package without using or affecting
the state of the package.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 6 of 68

2 INFORMED Design

The INFORMED design process, as described in [1], progresses through a number of stages, the
emphasis being on the location of state in the system. The key stages can be summarised as follows:

1 Identification of System Boundary; inputs and outputs.

2 Identification of the SPARK Boundary.

3 Identification and localisation of system state.

4 Handling of initialisation of state.

5 Handling of secondary requirements.

In order to demonstrate the techniques employed in obtaining the final system architecture these
stages are elaborated in this document.

2.1 Identification of System Boundary

This involves determining the entities in the physical real world which influence or are influenced by the
behaviour of the core TIS.

These have already been elaborated in the Formal Design [2] and can be summarised as:

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 7 of 68

Entity Input / Output Comment

door input The core TIS monitors the status of the door via API calls.

latch output The core TIS controls the state of the latch via API calls.

alarm output The core TIS controls the state of an (audible) alarm via API calls.

time input The core TIS makes use of the current time in its decision making
process. Time will be supplied by system calls.

display output The core TIS controls the text presented on the display at the
portal, this is via API calls.

finger input The core TIS makes use of fingerprint data in determining user
authentication, this is via API calls to the Biometric Library.

userToken input /output Data from the userToken is used by TIS in the authentication
process.

The userToken may be updated as part of the user authentication
process.

Access to the userToken is via the CardReader API.

adminToken input Data from the adminToken is used by TIS in the administrator
logon process.

keyboard input The core TIS is controlled by commands entered by the
administrator at the console keyboard. Data will be obtained via
system calls.

screen output The core TIS displays information to the administrator at the
console. Screen updates will be performed using system calls

floppy input/ output Large volume data is supplied to the core TIS and exported from
core TIS via the floppy drive.

Table 1 System boundary, Inputs and Outputs

2.2 Identification of the SPARK boundary

The formal design of TIS shows the TIS system to be a purely sequential system. Although User Entry
and Administrative functions could be performed in parallel and be viewed as being performed by
separate SPARK systems this will not be done since there are constraints in the specification and design
that ensure that user and administrative operations do not occur concurrently.

Considering the Interfaces, the Card Reader does not map well onto the entities that we want to reason
about within the main program. The Card Reader does not appear explicitly in the Formal Design and it
would be desirable if the annotations in the SPARK system relate closely to the entities in the formal
design, this will not be possible if the Card Reader is included in the SPARK system. However the Card
Reader itself will be fairly complex and we would benefit from performing static analysis on the
processing within the Card Reader.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 8 of 68

This suggests introducing a SPARK system to manage the CardReader interface with the tokens, which
will process information from and to the tokens via the token reader. This layer will provide operations
that answer questions in terms of system entities, such as “is User Token Present”. The implementation
of which will require complex interactions with the Card Reader API.

Hence the core TIS will be two SPARK systems:

• one to provide an abstraction of the Card Reader interface which manages token data; and

• one to use token data and all the other inputs to control the TIS system outputs.

This is realised in Figure 2.

Door Latch

Screen

Keyboard
Display

Bio

Clock

Floppy

Alarm

API to Door API to Latch

API to Display

Win32 and
System

calls API to Alarm

API to Biometric Library

Main

API to Card ReadersToken Reader

AdminTokenUserToken

SPARK Sub-system 2

SPARK Sub-system 1

Figure 2 : SPARK System boundary

The core TIS is only a component of the TIS system. The TIS system itself comprises the Crypto Library,
Certificate Processing Library, and several drivers that are not included in the core TIS. These will not

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 9 of 68

form part of the SPARK system. The majority of these provide access to the environment. Those that do
not provide interfaces to the environment are the Certificate Processing Library and the Crypto Library.

Both of these libraries will be encapsulated within SPARK packages that provide a thin layer access to
the routines provided within the library. These SPARK packages will include annotations in their
specifications which reflect the flow of information resulting from use of the libraries. The Certificate
Processing Library has no persistent state so can be encapsulated within a utility package,
CertProcessing. The Crypto Library contains state corresponding to the keys held within the library so
this must be encapsulated within a variable package, KeyStore.

2.3 Identification and Localisation of state

Within this stage we need to identify the state that needs to be stored. Again the formal design has
identified the system state, so the activity within the INFORMED process is reduced to localisation of
state in order to present meaningful system level information flow and ensure that state is not made un-
necessarily global. Subsystem 1 captures the core TIS as specified in the formal design.

From the formal design (IDStationC) we identify the following state:

State Constituents Comments

userTokenPresence Determined through polling the user token via the
Card Reader. Associated with the UserToken
boundary.

UserToken

currentUserToken A local copy of the data on the current user token.
Must be held for efficiency reasons. Associated
with the UserToken boundary. There are four
types of certificate that may be utilised from the
user token.

adminTokenPresence Determined though polling the admin token via
the Card Reader. Associated with the
AdminToken boundary.

AdminToken

currentAdminToken A local copy of the data on the current admin
token. Must be held for efficiency reasons.
Associated with the AdminToken boundary. Only
the authorisation certificate is used from the
admin token.

Finger fingerPresence Determined through polling the finger via the Bio
Interface. This only need be checked when the
system is waiting for a finger to authenticate, local
state is unnecessary.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 10 of 68

State Constituents Comments

currentDoor A local copy of the current state of the door, must
be held to determine when the door state
changes. Associated with the Door boundary

currentLatch A local copy of the current state of the latch, must
be held to determine when the latch state needs
to change. Associated with the Latch boundary.

latchTimeout Indicates when the latch must be locked,
associated with the Latch boundary.

doorAlarm Indicates when the door is in an insecure state.
Associated with the Door boundary, but depends
on the current state of the Latch.

alarmTimeout Indicates when the door must be closed before
the door is considered in an insecure state.
Associated with the Door boundary

DoorLatchAlarm

currentTime A local copy of the current time. This is associated
with the Clock boundary.

floppyPresence Indicates whether the floppy is present or not.
Associated with the Floppy boundary.

currentFloppy Indicates the latest value read from the floppy.
Associated with the Floppy boundary.

Floppy

writtenFloppy Indicates the latest value written to the floppy.
Required to enable checks to ensure the audit log
is written successfully. Associated with the Floppy
boundary.

Keyboard keyedDataPresence Indicates whether there is data at the keyboard or
not. Associated with the Keyboard boundary.

Config Configuration Data used to determine entry
permissions and authorisation certificate validity
along with a number of durations and thresholds.
This configuration data is security critical
essential state.

The configuration data is persistent through
power down.

Stats This is an internal record of operating statistics. It
is not essential to the function of the system.

KeyStore The state associated with the KeyStore is entirely
maintained by the Crypto Library. Following
enrolment this state is constant and is preserved

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 11 of 68

State Constituents Comments

through power down.

CertificateStore This contains the next Serial number used for
issuing Authorisation certificates. This is
persistent through power down. The value of this
state impacts the output Authorisation certificate
so it should be considered essential.

Admin This is TIS internal state that records whether an
administrator is logged on or not and the currently
performed operation if any.

AuditLog This represents the record of auditable events
held by the system. Its presence is required to
ensure the system is demonstrably secure and
the state is essential. This state is preserved
through power down.

status Internal state associated with the User Entry
operation. At the system level this need not be
visible.

fingerTimeout Internal state associated with the User Entry
operation. At the system level this need not be
visible.

tokenRemovalTimeout Internal state associated with the User Entry
operation. At the system level this need not be
visible.

Internal

enclaveStatus Internal state associated with all enclave
functions of the TIS, ie all functions excluding user
entry. At the system level this need not be visible.

currentDisplay Indicates the latest message on the display,
required to enable logging of changes to the
display. Associated with Display boundary.

currentScreen Indicates the latest message on the display,
screenMsg is required to enable logging of
changes to the display. For efficiency reasons it
may be useful to retain a record of the other
screen components, however it is not necessary.
Associated with Screen boundary.

Table 2 State Identification

Although the Internal state is internal to the way in which the system operates we choose to
encapsulate this within two variable packages Enclave and Entry. Where additional local state is

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 12 of 68

associated with a boundary variable the boundary variable is encapsulated by a variable package
containing the additional state. The overall localisation of state is given by Figure 3.

We make the following observations about this design.

1 All boundary variables are encapsulated within a variable package. In many cases this is because
there is additional state associated with this boundary. However for Alarm and Bio this is not the
case. The reason for encapsulating these is that the boundary variable packages should have very
simple implementations, simply providing calls through to the API. The encapsulating variable
packages will also handle other activities such as auditing any system errors.

2 By making Stats and Admin abstract data types these will not appear in the main program
information flow annotations.

3 All the interfaces may use the AuditLog for reporting system faults – these dependencies are not
shown explicitly to avoid cluttering the diagrams.

4 Some uses of ConfigData have been omitted for clarity. These are noted under each figure.

5 There are a number of simple types packages these will be used throughout the system. Again
usage is not shown on the diagrams.

6 The File utility later provides types and operations for accessing system files.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 13 of 68

Keyboard.
Interface

Display.
Interface

Alarm. Interface

Main

Latch.
Interface

LatchDoor

Door.
Interface

UserToken.
Interface

UserToken

AdminToken.
Interface

AdminToken

Floppy.
Interface

Floppy

Display

Screen.
Interface

Screen

Clock.
Interface

Clock

KeyStore

AuditLog

Keyboard

ConfigData

AuditTypes

Admin

Enclave

UserEntry

CertificateStore

Cert.Attr.
Auth

Cert.Attr.
IandA

Cert.ID

Cert.Attr

Cert.Attr.
Priv

Cert

Stats

Alarm

Bio.
Interface

Bio

TokenTypes

CertTypes

BasicTypes

 File
CryptoTypes

AandITypes

PrivTypes

AlarmTypes
CertProcessing

Figure 3 : Localisation of State

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 14 of 68

The TIS function can be decomposed into a number of key components, which are already apparent in
the structure of the formal design. The system structure is shown separately for each of these key
components.

1 Polling: this covers the process of obtaining regular updates of system inputs.

2 Updating: this covers the process of performing regular updates of system outputs.

3 Processing user entry: this covers the multi-phase user entry operation.

4 Performing enclave activities: this covers the activities performed at the console, all administrator
operations and enrolment.

In the following diagrams the boundary variable is shown only where it is used. So for instance polling
makes use of the latch state but not the boundary variable associated with the interface to the latch.

2.3.1 Polling

We introduce a utility layer to control the polling activity. Notice that during polling the internal Door
state is updated based on the current state of the latch.

Main

Latch

Door

Door.
Interface

UserToken.
Interface

UserToken

AdminToken.
Interface

AdminToken

Floppy.
Interface

FloppyClock.
Interface

Clock

AuditLog

AuditTypes

Poll Keyboard.
Interface

Keyboard

Display

UserEntry

Figure 4 : Poll Context

The AuditLog may be used by the Door, Display, AdminToken and UserToken during
polling. The AdminToken and UserToken may raise SystemErrors.
The AuditLog uses ConfigData.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 15 of 68

2.3.2 Updating

We introduce a utility layer to manage the update of environmental data controlled by TIS. The screen
updates will depend on who is currently logged on and the system statistics, provided as parameters
and the configuration data.

Admin

Display.
Interface

Main

Latch.
Interface

Latch

Display

Screen.
Interface

Screen
Updates

Door

AuditLog

Stats

ConfigData

Alarm.
Interface

Alarm

Figure 5: Update Context

The AuditLog may be used by Alarm, Display, Screen, Latch.
The AuditLog also uses ConfigData.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 16 of 68

2.3.3 Processing User Entry

The user entry operation is controlled by a state-machine. This state-machine is the state of the Entry
package. The Entry package will also provide the top level operations required to support User Entry. The
processing of the certificates in the UserToken will make use of the CertificateProcessing utility layer.
This CertificateProcessing utility layer is implemented using the Certificate Processing Library API.

Main

Door

UserToken.
Interface

UserToken

Display

KeyStore

AuditLog

ConfigDataAuditTypes

 CertProcessing

UserEntry

Clock.
Interface

Clock

CertificateStore

AuthCert IACert
IDCert

AttrCert

PrivCert

Cert

Stats

Bio.
Interface

Bio

Latch

Figure 6 : User Entry Context

The AuditLog may be used by UserEntry, Latch, Display, KeyStore and Bio. Bio and
KeyStore may log SystemFaults.
ConfigData is used by AuditLog, Door, UserEntry and UserToken.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 17 of 68

2.3.4 Performing Enclave Activities

The activities performed in the enclave are controlled by a state-machine. This state-machine is the
state of the Enclave package. The Enclave package must also make use of the Admin state to
determine what can be performed. The Enclave package will also provide the top level operations
required to support operations performed within the enclave. Utility layers are introduced to perform the
configuration data checks and updates and the enrolment checks and updates.

Keyboard.
Interface

Main

Door

Door

AdminToken.
Interface

AdminToken

Floppy.
Interface

Floppy
Display

Screen

KeyStore

AuditLog

Keyboard

ConfigData

AuditTypes

Admin

CertProcessing

Enclave

Configuration

Enrolment

CertificateStore

Cert.Attr.
Auth

Clock.
Interface

Clock

Latch

Cert.ID

Figure 7 : Enclave Context

AuditLog may be used by Configuration, Display, Enclave, Enrolment, Latch and
KeyStore. KeyStore may raise SystemFaults.
ConfigData is used by AuditLog and Configuration.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 18 of 68

2.4 Initialisation of State

All boundary variables are assumed to be initialised by the environment.

The remaining state must either be initialised during elaboration, or operations must be made available
to initialise the state prior to its use.

Within INFORMED it is considered bad practice to initialise state to “in range” values that are not
necessarily consistent since this will prevent the use of static analysis to ensure that the system state is
all initialised and consistent. With this in mind we take the following approach to initialisation.

Where all components of a package state variable can be initialised at elaboration to appropriate valid
values, these will be initialised at elaboration. However the initialisation of much of the state depends
on the value of entities persistent across power-down or is dependant on whether the IDStation is
already enrolled or not. Where this is the case the state must be set by a procedure call to allow
adequate static analysis.

State that is persistent across power-down will be stored in persistent memory and will need to be
initialised by a procedure call since the data will need to be extracted from the memory. This applies to
the state associated with KeyStore, CertificateStore, ConfigData and AuditLog. The persistent
components of the state associated with these packages should be maintained separately from those
aspects that are set at power-up. As CertificateStore, ConfigData and AuditLog maintain local state as
well as using files to store persistent data, the data held on file will be recorded by FileState.

The initial value of some state depends on whether the IDStation is already enrolled or not. Where this
is the case the state should be set by a procedure call. This applies to state associated with Screen,
Display, Enclave.

A summary of the state and the initialisation mechanisms is presented in the Table 3.

Ada Package state
variable

mode initialisation
mechanism

Z State

AdminToken.Input in assumed adminToken

AdminToken.Status - assumed -

AdminToken.State - elaboration adminTokenPresence
currentAdminToken

Alarm.Output out assumed alarm

AuditLog.State - procedure call AuditLog (excluding
logFiles)

AuditLog.FileState - elaboration AuditLog.logFiles

CertificateStore.State - procedure call CertificateStore

CertificateStore.FileState - elaboration -

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 19 of 68

Ada Package state
variable

mode initialisation
mechanism

Z State

Clock.CurrentTime - procedure call currentTime

Clock.Now in assumed now

ConfigData.State - procedure call ConfigData

ConfigData.FileState - elaboration -

Display.Output out assumed display

Display.State - procedure call currentDisplay

Door.Input in assumed door

Door.State - elaboration currentDoor
alarmTimeout
doorAlarm

Enclave.State - procedure call enclaveStatus

Floppy.Input in assumed floppy (for reads)

Floppy.Output out assumed floppy (for writes)

Floppy.State - elaboration currentFloppy
floppyPresence

Floppy.WrittenState - elaboration writtenFloppy

Keyboard.Input in assumed keyboard

Keyboard.State - elaboration keyDataPresence

KeyStore.State - procedure call privateKey

KeyStore.Store - assumed keys

Latch.Output out assumed latch

Latch.State - elaboration currentLatch
latchTimeout

Main.TheAdmin - elaboration Admin

Main.TheStats - elaboration Stats

Screen.Output out assumed screen

Screen.State - procedure call currentScreen.screenMsg

UserEntry.State - elaboration status
fingerTimeout
tokenRemovalTimeout

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 20 of 68

Ada Package state
variable

mode initialisation
mechanism

Z State

UserToken.Input in assumed userToken (reads)

UserToken.Output out assumed userToken (writes)

UserToken.Status - assumed -

UserToken.State - elaboration currentUserToken
userTokenPresence

Table 3 : State Summary

2.5 Other design issues

2.5.1 Managing Persistent data

TIS retains some data that must be preserved over a power cycle. The majority of this data will be stored
in TIS System files as described in the following table. The remaining data (KeyStore.Store) is data held
within the Crypto library; the preservation of this data is managed by the Library.

Data FileName Location

ConfigData config.dat ./System

CertificateStore keystore ./System

AuditLog file01.log
…

filenn.log

./Log

ConfigData from
Floppy

config.dat ./Temp

Enrolment Data from
Floppy

enrol.dat ./Temp

Archive for Floppy archive.log ./Temp

All file locations are relative to the location at which the TIS application is installed.

2.5.2 File Formats

The data received and supplied via the floppy has the following naming convensions:

• Configuration data is supplied in a file named config.dat.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 21 of 68

• Enrolment data is supplied in a file named enrol.dat.

• Archives of the audit log are always written to a file named archive.log.

File formats are defined here for all files that are exported or imported from the system.

2.5.2.1 AuditLog

Audit log data is exported during an archive.

The audit file contains a number of audit entries with the following properties.

• each audit entry is terminated by a LF (Line feed) and CR (Carriage return). The entry itself does not
contain any LF or CR.

• each field of an audit entry is comma separated. Individual fields do not contain commas.

The fields of an audit entry are presented it the order and format given in the table below:

field format comments

time yyyy-mm-dd hh:mm:ss.s Time is displayed to 1/10th second accuracy.

severity n Allowed values “1” – info; “2” – warning, “3” – critical

id nn Numeric representation of the audit element type. This
is the offset of the element type in AUDIT_ELEMENT
from the first element.
 For example startUnenrolledTISElement has value 0.

type ASCII text Text name for the given audit element type see Formal
Design [2], values are given in AUDIT_ELEMENT.
This field does not exceed 20 characters.

user ASCII text Text description identifying user in the form
“Issuer: xxx SerialNo: yyy” or “NoUser”.
This field does not exceed 50 characters.

description ASCII text free text description containing additional information
This field does not exceed 150 characters.

Where “n” represents a single ASCII digit.

2.5.2.2 ConfigData

The format of a configuration data file is presented in the next table. Each field is presented on a new
line and takes the form of a field identifier followed by at least one space and the value of the field.
Each line is terminated by a CR and LF.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 22 of 68

The file formats have been selected to provide a user-friendly interface for entering values. This includes
restricting the granularity of short timeout durations to 1 second, the granularity of longer times to
minutes and the granularity of file sizes to kBytes.

File format comments

ALARMSILENTDURATION nnn value is in seconds range 00..200

LATCHUNLOCKDURATION nnn value is in seconds range 00..200

TOKENREMOVALDURATION nnn value is in seconds range 00..200

FINGERWAITDURATION nnn value is in seconds range 00..200

ENCLAVECLEARANCE tttttt values of “ttttt” are unmarked, unclassified,
restricted, confidential, secret, topsecret

WORKINGHOURSSTART hh:mm 00:00 represents midnight, max value is 23:59

WORKINGHOURSEND hh:mm 00:00 represents midnight, max value is 23:59

MAXAUTHDURATION hh:mm max value is 10:00

ACCESSPOLICY tttttt values of “tttttt” are allhours and workinghours

MINENTRYCLASS ttttt values of “ttttt” are unmarked, unclassified,
restricted, confidential, secret, topsecret

This field must have no higher classification than
the value given for ENCLAVECLEARANCE.

MINPRESERVEDLOGSIZE nnnn value is in kBytes range 0 .. 4096

ALARMTHRESHOLDSIZE nnnn value is in kBytes range 0 .. 4096

This field must be no greater than the value
given for MINPRESERVEDLOGSIZE.

SYSTEMMAXFAR nnnnnnnnnn INTEGER32 value nnnnnnnnnn/(231 – 1) is the
required probability of false acceptance.

2.5.2.3 Enrolment Data

Enrolment data is supplied as a number of ID certificates within a single file. Each ID Certificate takes
the same format as a certificate transmitted across the TCP/IP interface to the device drivers (although
the outermost braces enclosing the certificate “dictionary” are omitted). Each certificate will appear as a
string on a single line within the enrolment data file.

The first ID certificate in the file must be that of the CA that issued the TIS ID Certificate, the second ID
certificate in the file must be the ID certificate of the TIS being enrolled. The remaining certificates may
be in any order as long as the ID certificate of a CA precedes any ID certificates issued by that CA.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 23 of 68

The format of the certificate is as presented in Table 4, non-bold text appears in the file as presented
here, bold text is defined in the subsequent table. Return characters should not appear in the string,
they are used here to improve layout, similarly space characters are optional and will be ignored within
the processing.

ID Certificate format within Enrolment file

'CertLength': 'CertificateLength',

'CertDataT':

 {'CertType': '0',

 'SerialNumber': 'SerialNumber',

 'SigAlgID': 'Algorithm',

 'Issuer': {'Text': 'IssuerText',
 'ID': 'IssuerID',
 'TextLength': 'IssuerTextLength'},

 'Validity': {'NotAfter': {'Minute': 'Minute',
 'Month': 'Month',
 'Day': 'Day',
 'Hour': 'Hour',
 'Year': 'Year'},

 'NotBefore': {'Minute': 'Minute',
 'Month': 'Month',
 'Day': 'Day',
 'Hour': 'Hour',
 'Year': 'Year'}},

 'Subject': {'Text': 'UserText',
 'ID': 'UserID',
 'TextLength': 'UserTextLength'},

 'SubjectPublicKeyInfo': {'KeyLength': 'KeyLength',
 'AlgoRithmID': 'Algorithm',
 'KeyID': 'KeyID'},

 'CryptoControlData': {'DigestFinalReturn': 'ReturnValue',
 'DigestLength': 'DigestLength',
 'DigestUpdateReturn': 'ReturnValue',
 'Digest': {'VerifyReturn': 'ReturnValue',
 'SignReturn': 'ReturnValue',
 'DigestID': 'DigestID'}},

 'SignatureData': {'AlgoRithmID': 'Algorithm',
 'SigLength' : 'SigLength',
 'Signature': {'KeyID': 'KeyID',
 'DigestID': 'DigestID'}}}

Table 4 ID certificate structure within enrolment file

Values taken by entities in bold are presented in Table 5. Constraints on valid ID
certificates are detailed in Table 6.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 24 of 68

Certificate Entity valid values

Algorithm string with the following values:

RSA MD2 MD5
SHA_1 RIPEMD128 RIPEMD160
MD2_RSA MD5_RSA SHA1_RSA
RIPEMD128_RSA RIPEMD160_RSA

CertificateLength numeric string range 0 .. 4050

Day numeric string range 01 .. 31

DigestID numeric string range 0 .. 232 -1

DigestLength numeric string range 0 .. 32

Hour numeric string range 00 .. 23

IssuerTextLength numeric string range 0 .. 40

IssuerId numeric string range 0 .. 232 –1

IssuerText ASCII string with maximum length of 40 characters (no CR or LF
characters).

KeyID numeric string range 0 .. 232 -1

KeyLength numeric string range 0 .. 128

Minute numeric string range 00 .. 59

Month numeric string range 01 .. 12

ReturnValue string with one of the following values

OK HostMemory
GeneralError FunctionFailed
ArgumentsBad AttributeReadOnly
AttributeTypeInvalid AttributeValueInvalid
DataInvalid DataLenRange
DeviceError DeviceMemory
FunctionCanceled KeyHandleInvalid
KeySizeRange KeyTypeInconsistent
KeyFunctionNotPermitted MechanismInvalid
MechanismParamInvalid ObjectHandleInvalid
OperationActive OperationNotInitialized
SignatureInvalid SignatureLenRange
TemplateIncomplete TemplateInconsistent
BufferTooSmall CryptokiNotInitialized
CryptokiAlreadyInitialized

SerialNumber numeric string range 0 .. 232 -1

SigLength numeric string range 0 .. 128

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 25 of 68

Certificate Entity valid values

UserId numeric string range 0 .. 232 –1

UserText ASCII string with maximum length of 40 characters

UserTextLength numeric string range 0 .. 40

Year numeric string range 1901 .. 2099

Table 5 Valid values of fields

Constraint Description

Date exists Both the NotBefore and NotAfter dates must be real dates. Setting Month
to 2 and Day to 30 would always be invalid

Certificate length
correct

The certificate length is the number of characters in the string starting
from the ‘{‘ following CertDataT field to the final ‘}’.

Algorithm consistent The SignatureData.AlgorithmID and SigAlgID must match, this algorithm
must also be combined algorithm including an encryption mechanism and
a digest mechanism.

Signature not too long The SigLength field must be no larger than the length of the key used to
sign the certificate.

Returns OK The crypto control data detailing the return values crypto operations
DigestUpdateReturn, DigestFinalReturn and VerifyReturn must be set to
OK. This indicates that these functions will succeed.

Digest matches signed
digest

The SignatureData.Signature.DigestID must match
CryptoControlData.Digest.DigestID. This represents the digest used to
create the signature being the same as the digest calculated from the raw
certificate data.

signing key matches
issuer

The SignatureData.Signature.KeyID must match the key id associated
with the Issuer.ID. This will be the KeyID supplied within the
SubjectPublicKeyInfo of the Issuer’s ID certificate.

Table 6 Constraints on valid certificates

2.5.3 System Faults

The formal design indicates that system faults may be raised. These should be handled as follows:

System faults are warnings except in the following critical cases:

• Failure to control the Latch

• Failure to monitor the Door

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 26 of 68

• Failure to write to the Audit Log

The system shall continue to function following a system fault categorised as a warning.

The system shall raise an alarm following a critical fault.

2.5.4 Implementation constraints on types

A number of the numeric entities in the Formal Design are permitted to take any value. The following
constraints are applied to the values of these entities within the implementation.

Z Entity State / Type Implementation range Units

CertificateId.serialNumber State 0 .. 232 – 1

TOKENID Type 0 .. 232 – 1

TIME Type 1901-01-01 00:00:00.0 to
2099-12-31 23:59:59.9

ConfigData.alarmSilentDuration State 0 .. 2000 1/10th sec

ConfigData.latchUnlockDuration State 0 .. 2000 1/10th sec

ConfigData.tokenRemovalDuration State 0 .. 2000 1/10th sec

ConfigData.fingerWaitDuration State 0 .. 2000 1/10th sec

ConfigData.maxAuthDuration State 0 .. 864000 1/10th sec

ConfigData.minPreservedLogSize State 0 .. 222 Bytes

ConfigData.alarmThresholdSize State 0 .. 222 Bytes

CertificateStore.nextSerialNumber State 0 .. 232 – 1

AuditLog.numberLogEntries State 0 .. 214

Stats.successEntry State 0 .. 231 -1

Stats.failEntry State 0 .. 231 -1

Stats.successBio State 0 .. 231 -1

Stats.failBio State 0 .. 231 -1

The size of an Audit Log entry is 28 bytes, this determines the ratio between AuditLog.numberLogEntries
and ConfigData.minPreservedLogSize. The maximum value for ConfigData.minPreservedLogSize was
selected bearing in mind that

• each log file must fit on the Floppy Drive if it is archivable;

• to archive data we need to have at least a complete log file.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 27 of 68

The figure for ConfigData.minPreservedLogSize corresponds to 17 log files each with a capacity of 1024
elements. This gives an audit capacity of over 4Mbytes (> 16,000 log elements) and should result in a
system where each of the functions is testable.

Certificate serial numbers and token Ids will be represented by Unsigned 32bit words. Other values will
be represented by Signed 32bit words.

It should be noted that in the implementation we distinguish between durations and time stamps. All of
these appear as type TIME in the formal design.

This has the following impact on the implementation:

• Statistics will only report the number of failures/successes up to the implementation maximum,
after this point the statistic will not be incremented.

• TIS will not issue authorisation certificates once the maximum certificate serial number has been
reached. This will result in TIS raising a system fault.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 28 of 68

2.6 The Second SPARK Subsystem

The second spark subsystem is very simple. It consists of a single variable package, which encapsulates
a boundary variable representing the interface to the Card Reader API. This subsystem may make use of
the audit log facilities of the primary SPARK subsystem. However there is a contextual change made at
the interface of the Primary SPARK subsystem at the point at which it uses the TokenReader. This
context change ensures that the primary SPARK subsystem distinguishes the interfaces to the User and
Admin Token Readers.

TokenReader.
Interface

TokenReader

AuditLog

ConfigDataAuditTypes

Clock.
Interface

Clock

Figure 8 : The Second SPARK Subsystem

The state associated with the TokenReader package is identified as follows. As this SPARK subsystem
provides a conversion between the available APIs and the system model there is a less strong
correspondence between the Z state and the state encapsulated by this package. Where there is a
correspondence it is tabulated below, although in all cases the Z state components are also modelled
within the Primary SPARK subsystem.

Ada Package state mode initialisation
mechanism

represents

TokenReader.Input in assumed data read from tokens (adminToken and
userToken)

TokenReader.Output out assumed data written to tokens (userToken)

TokenReader.Status - assumed status information obtained from tokens

TokenReader.State - procedure call persistent state maintained by the SPARK
subsystem relating to the token reader (includes
userTokenPresence and adminTokenPresence)

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 29 of 68

3 Package Summary

The following section summarises the facilities provided by each of the library level packages in the
system and references the formal design where the types, state or operations are derived from the
formal design.

This does not provide further details of the boundary variables as these have all been made private to a
variable package. The state associated with these boundary variables is virtual and will be form part of
the appropriate variable package state.

3.1 Types Packages

In the Z there are a number of entities that have optional types. This means that the value may not be
defined. Hence, where the underlying type is a free type (implemented by an enumeration type) the
implementation will declare a parent type of the enumeration type, which is extended by a value
representing the undefined value. Where the underlying type is not implemented by an enumerated
type, a Boolean flag will be used to indicate the validity of the optional type.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 30 of 68

3.1.1 Admin

Abstract Data Type containing administrator control information.

3.1.1.1 Types

Ada Type type classification Z type

Admin.OpT enumeration ADMINOP

Admin.OpAndNullT enumeration optional ADMINOP

Admin.T private Admin

3.1.1.2 Operations

Ada Operation operation type Z Operation

Admin.Init procedure InitAdmin

Admin.Logon procedure AdminLogon

Admin.Logout procedure AdminLogout

Admin.StartOp procedure AdminStartOp

Admin.FinishOp procedure AdminFinishOp

Admin.IsPresent Boolean function AdminIsPresent

Admin.OpIsAvailable function returning
OpAndNullT

AdminOpIsAvailable

Admin.IsDoingOp Boolean function AdminIsDoingOp

Admin.TheCurrentOp retrieval function The currentAdminOp value

Admin.SecurityOfficerIsPresent Boolean function the rolePresent =
securityOfficer

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 31 of 68

3.1.2 AlarmTypes

Types that appear within the context of alarms.

3.1.2.1 Types

Ada Type type classification Z type

AlarmTypes.StatusT enumeration ALARM

3.1.3 AuditTypes

Types that appear within the context of the audit log.

3.1.3.1 Types

Ada Type type classification Z type

AuditTypes.ElementT enumeration AUDIT_ELEMENT

AuditTypes.SeverityT enumeration AUDIT_SEVERITY

AuditTypes.DescriptionT string TEXT

AuditTypes.UserTextT string USERTEXT

AuditTypes.FileSizeT integer N

AuditTypes.AuditEntryCountT integer N

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 32 of 68

3.1.4 BasicTypes

These are types that appear across the TIS implementation

3.1.4.1 Types

Ada Type type classification Z type

BasicTypes.Integer32T numeric INTEGER32

BasicTypes.ByteT numeric BYTE

BasicTypes.PresenceT enumeration PRESENCE

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 33 of 68

3.1.5 Cert

Abstract data type representing the common aspects of certificates.

3.1.5.1 Types

Ada Type type classification Z type

Cert.ContentsT private CertificateContents

3.1.5.2 Operations

Ada Operation operation type Z Operation

Cert.TheIssuer retrieval function value of id.issuer

Cert.TheId retrieval function value of id

Cert.ExtractUser function thisUser

Cert.TheMechanism retrieval function value of mechanism

Cert.IsCurrent Boolean function CertIsCurrent

Cert.GetData retrieval function value of data

Cert.GetSignature retrieval function value of signature

Cert.IssuerKnown procedure CertIssuerKnown

Cert.IsOK procedure CertOK

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 34 of 68

3.1.6 Cert.Attr

Abstract data type representing the common aspects of all attribute certificates.

3.1.6.1 Types

Ada Type type classification Z type

Cert.Attr.ContentsT private AttCertContents

3.1.6.2 Operations

Operations inherited from Cert with the addition of the following.

Ada Operation operation type Z Operation

Cert.Attr.TheBaseCert retrieval function value of baseCertId

Cert.Attr.ExtractUser function thisUser

Note that ExtractUser overrides the operation inherited from Cert. The user of an attribute certificate is
deduced from the baseCertId and not the CertId.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 35 of 68

3.1.7 Cert.Attr.Auth

Abstract data type representing authorisation certificates.

3.1.7.1 Types

Ada Type type classification Z type

Cert.Attr.Auth.ContentsT private AuthCertContents

3.1.7.2 Operations

Operations inherited from Cert.Attr with the addition of the following:

Ada Operation operation type Z Operation

Cert.Attr.Auth.Contstruct procedure constructAuthCert

Cert.Attr.Auth.IsOK procedure AuthCertOK

Cert.Attr.Auth.TheRole retrieval function value of role

Cert.Attr.Auth.TheClearance retrieval.function value of clearance

Cert.Attr.Auth.Extract procedure extractAuthCert

Cert.Attr.Auth.SetContents procedure -

Cert.Attr.Auth.Clear procedure -

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 36 of 68

3.1.8 Cert.Attr.IandA

Abstract data type representing the identification and authentication certificates.

3.1.8.1 Types

Ada Type type classification Z type

Cert.Attr.IandA.ContentsT private IandACertContents

3.1.8.2 Operations

Operations inherited from Cert.AttrCert with the addition of the following

Ada Operation operation type Z Operation

Cert.Attr.IandA.TheTemplate retrieval function value of template

Cert.Attr.IandA.Extract procedure extractIandACert

Cert.AttrIandA.Clear procedure -

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 37 of 68

3.1.9 Cert.Attr.Priv

Abstract data type representing privilege certificates.

3.1.9.1 Types

Ada Type type classification Z type

Cert.Attr.Priv.ContentsT private PrivCertContents

3.1.9.2 Operations

Operations inherited from Cert.Attr with the addition of the following

Ada Operation operation type Z Operation

Cert.Attr.Priv.TheRole retrieval function value of role

Cert.Attr.Priv.TheClearance retrieval.function value of clearance

Cert.Attr.Priv.Extract procedure extractPrivCert

Cert.Attr.Priv.Clear procedure -

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 38 of 68

3.1.10 Cert.ID

Abstract data type representing ID Certificates.

3.1.10.1 Types

Ada Type type classification Z type

Cert.ID.ContentsT private IDCertContents

3.1.10.2 Operations

Operations inherited from Cert with the addition of the following

Ada Operation operation type Z Operation

Cert.ID.ThePublicKey retrieval function value of subjectPubK

Cert.ID.TheSubject retrieval function value of subject

Cert.ID.Extract procedure extractIDCert

Cert.ID.Clear procedure -

3.1.11 CertTypes

Types that appear within the context of certificates.

3.1.11.1 Types

Ada Type type classification Z type

CertTypes.RawCertificateT String RawCertificate

CertTypes.SignatureT String SIGDATA

CertTypes.RawDataT String RAWDATA

CertTypes. IDT record CertificateId

CertTypes.SerialNumberT integer N

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 39 of 68

3.1.12 CryptoTypes

Types that appear within the context of encryption.

3.1.12.1 Types

Ada Type type classification Z type

CryptoTypes.KeyTypeT enumeration KEYTYPE

CryptoTypes.KeyPartT record KeyPart

CryptoTypes.IssuerT record Issuer

CryptoTypes.AlgorithmT enumeration ALGORITHM

3.1.13 IandATypes

Types that appear within the context of the Biometric checks.

3.1.13.1 Types

Ada Type type classification Z type

IandATypes.FarT numeric INTEGER32

IandTypes.MatchResultT enumeration MATCHRESULT

IandATypes.TemplateT record FingerprintTemplate

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 40 of 68

3.1.14 PrivTypes

Types that appear within the context of privileges.

3.1.14.1 Types

Ada Type type classification Z type

PrivTypes.ClassT enumeration CLASS

PrivTypes.ClearanceT record Clearance

PrivTypes.PrivilegeT enumeration PRIVILEGE

PrivTypes.AdminPrivilegeT array ADMINPRIVILEGE

3.1.15 Stats

Abstract Data Type for maintaining system statistics.

3.1.15.1 Types

Ada Type type classification Z type

Stats.T private Stats

3.1.15.2 Operations

Ada Operation operation type Z Operation

Stats.Init procedure InitStats

Stats.AddSuccessfulEntry procedure AddSuccessfulEntryToStats

Stats.AddFailedEntry procedure AddFailedEntryToStats

Stats.AddSuccessfulBio procedure AddSuccessfulBioToStats

Stats.AddFailedBio procedure AddFailedBioToStats

Stats.DisplayStats procedure displayStats

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 41 of 68

3.1.16 TokenTypes

Types that appear within the context of tokens.

3.1.16.1 Types

Ada Type type classification Z type

TokenTypes.TokenId INTEGER32 N

TokenTypes.TryT enumeration TOKENTRY

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 42 of 68

3.2 Variable Packages

3.2.1 Alarm

Variable package providing the interface to the Alarm API.

3.2.1.1 State

The state of this package is solely the boundary variable representing the real world alarm.

3.2.1.2 Operations

Ada Operation operation type Z Operation

Alarm.UpdateDevice procedure UpdateAlarm

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 43 of 68

3.2.2 AuditLog

The Variable package holding and controlling the audit log.

3.2.2.1 State

Ada Package state mode Z State

AuditLog.State - AuditLog (excluding logFiles)

AuditLog.FileState - AuditLog.logFiles

The audit log state comprises files holding the audit entries, control state and audit alarm, this is not
elaborated here.

3.2.2.2 Operations

Ada Operation operation type Z Operation

AuditLog.Init procedure TISStartup (partial)
InitAuditLog

AuditLog.AddElementToLog procedure AddElementToLog

AuditLog.ArchiveLog procedure ArchiveLog

AuditLog.ClearLogEntries procedure ClearLogEntries

AuditLog.CancelArchive procedure CancelArchive

AuditLog.TheAuditAlarm retrieval function auditAlarm value

AuditLog.SystemFaultOccurred function

The operation Init updates the internal state from data preserved on file. In addition to the initialisation
detailed in the Formal Design the Init procedure will ensure that the Log directory used by the AuditLog
package is present.

The operation AddElementToLog will also construct the element from the parameters.

The operation SystemFaultOccurred indicates whether or not a critical system fault has occurred whilst
writing to the log.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 44 of 68

3.2.3 AdminToken

Variable package holding and managing the admin token state.

3.2.3.1 State

Ada Package state type Z State

AdminToken.State private adminTokenPresence
currentAdminToken

3.2.3.2 Operations

Ada Operation operation type Z Operation

AdminToken.Poll procedure PollAdminToken

AdminToken.ReadAndCheck procedure ReadAdminToken
AdminTokenOK
AdminTokenNotOK

AdminToken.IsPresent Boolean function adminTokenPresence = present

AdminToken.IsCurrent Boolean function AdminTokenCurrent

AdminToken.ExtractUser function extractUser

AdminToken.GetRole retrieval function value of AuthCertContents.role

AdminToken.Clear procedure ClearAdminToken

The operation ExtractUser makes use of Cert.ID.ExtractUser.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 45 of 68

3.2.4 Bio

The variable package holding state representing the biometric device and providing interfaces to the
biometric device.

3.2.4.1 State

The state associated with this package is solely state representing the input from and status of the
biometric device.

3.2.4.2 Operations

Ada Operation operation type Z Operation

Bio.Poll procedure PolFinger

Bio.Verify procedure verifyBio

Bio.Flush procedure FlushFingerData

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 46 of 68

3.2.5 CertificateStore

The variable package holding and maintaining the certificate store state.

3.2.5.1 State

Ada Package state type Z State

CertificateStore.State private CertificateStore

CertificateStore.FileState private -

3.2.5.2 Operations

Ada Operation operation type Z Operation

CertificateStore.Init procedure TISStartup (partial)
InitCertificateStore

CertificateStore.UpdateStore procedure UpdateCertificateStore

CertificateStore.SerialNumber function nextSerialNumber value

CertificateStore.
SerialNumberHasOverflowed

function -

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 47 of 68

3.2.6 Clock

Variable package maintaining the local time and providing access to the system clock.

3.2.6.1 Types

Ada Type type classification Z type

Clock.TimeT private TIME

Clock.DurationT integer TIME

Clock.TimeTextT string -

Clock.DurationTextT string -

3.2.6.2 State

Ada Package state type Z State

Clock.CurrentTime Clock.Time currentTime

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 48 of 68

3.2.6.3 Operations

Ada Operation operation type Z Operation

Clock.Poll procedure PollTime

Clock.TheCurrentTime retrieval function currentTime value

Clock.GetNow procedure, direct read
of real world time.

now value

Clock.GreaterThan Boolean function >

Clock.LessThan Boolean function <

Clock.GreaterThanOrEqual Boolean function ≥

Clock.LessThanOrEqual Boolean function ≤

Clock.ConstructTime constructor function

Clock.SplitTime procedure

Clock.PrintTime function

Clock.PrintDuration function

Clock.AddDuration function +

Clock.StartOfDay function

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 49 of 68

3.2.7 ConfigData

Package maintaining the configuration data.

3.2.7.1 Types

Ada Type type classification Z type

ConfigData.DurationT subtype of Clock.Duration N

ConfigData.AccessPolicyT enumeration ACCESS_POLICY

3.2.7.2 State

Ada Package state type Z State

ConfigData.State private ConfigData

ConfigData.FileState private -

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 50 of 68

3.2.7.3 Operations

Ada Operation operation type Z Operation

ConfigData.Init procedure InitConfig
TISStartup (partial)

ConfigData.UpdateData procedure -

ConfigData.TheDisplayFields procedure displayConfigData

ConfigData.ValidateFile procedure constraints on ConfigData

ConfigData.WriteFile procedure

ConfigData.AuthPeriodIsEmpty function authPeriodIsEmpty

ConfigData.GetAuthPeriod function getAuthPeriod

ConfigData.IsInEntryPeriod Boolean function in entryPeriod

ConfigData.TheAlarmThresholdEntries retrieval function value of alarmThresholdEntries

ConfigData.TheAlarmSilentDuration retrieval function value of alarmSilentDuration

ConfigData.TheLatchUnlockDuration retrieval function value of latchUnlockDuration

ConfigData.TheFingerWaitDuration retrieval function value of fingerWaitDuration

ConfigData.TheTokenRemovalDuration retrieval function value of tokenRemovalDuration

ConfigData.TheEnclaveClearance retrieval function value of enclaveClearance

ConfigData.TheSystemMaxFar retrieval function value of systemMaxFar

In addition to the initialisation detailed in the Formal Design the Config.Init procedure will ensure that
the System directory used by the ConfigData package is present.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 51 of 68

3.2.8 Display

This variable package maintains a local record of the display state and provides an interface to the
Display API.

3.2.8.1 Types

Ada Type type classification Z type

Display.MsgT enumeration DISPLAYMESSAGE

3.2.8.2 State

Ada Package state type Z State

Display.State Display.MsgT currentDisplay

3.2.8.3 Operations

Ada Operation operation type Z Operation

Display.UpdateDevice procedure UpdateDisplay

Display.SetValue procedure set currentDisplay

Display.ChangeDoorUnlockMsg procedure DisplayPollUpdate (partial)

Display.Init procedure TISStartup (partial)

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 52 of 68

3.2.9 Door

Variable package maintaining the local state of the door and interfacing to the Door API.

3.2.9.1 Types

Ada Type type classification Z type

Door.T enumeration DOOR

3.2.9.2 State

Ada Package state type Z State

Door.State private currentDoor
alarmTimeout
doorAlarm

3.2.9.3 Operations

Ada Operation operation type Z Operation

Door.Poll procedure PollTimeAndDoor (partial)

Door.UnlockDoor procedure UnlockDoor

Door.LockDoor procedure LockDoor

Door.Init procedure InitDoorLatchAlarm (partial)

Door.TheDoorAlarm retrieval function doorAlarm value

Door.TheCurrentDoor retrieval function currentDoor value

Door.Failure procedure DoorLatchFailure (partial)

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 53 of 68

3.2.10 Enclave

Variable package maintaining the enclave status and controlling enclave activities.

3.2.10.1 Types

Ada Type type classification Z type

Enclave.Status enumeration ENCLAVESTATUS

3.2.10.2 State

Ada Package state type Z State

Enclave private enclaveStatus

3.2.10.3 Operations

Ada Operation operation type Z Operation

Enclave.EnrolmentIsInProgress Boolean function EnrolmentIsInProgress

Enclave.AdminMustLogout Boolean function AdminMustLogout

Enclave.CurrentAdminActivityP
ossible

Boolean function CurrentAdminActivityPossible

Enclave.EnrolOp procedure TISEnrolOp

Enclave.AdminLogout procedure TISAdminLogout

Enclave.ProgressAdminActivity procedure TISProgressAdminLogon
TISAdminOp

Enclave.StartAdminActivity procedure TISStartAdminLogon
TISStartAdminOp

Enclave.ResetScreenMessage procedure ResetScreenMessage (partial)

Enclave.Init procedure TISStartup (partial)

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 54 of 68

3.2.11 Floppy

This variable package maintains local state relating to the contents of the floppy and provides access to
the floppy drive via system calls.

3.2.11.1 State

Ada Package state type Z State

Floppy.State File.T currentFloppy
floppyPresence

Floppy.WrittenState File.T writtenFloppy

3.2.11.2 Operations

Ada Operation operation type Z Operation

Floppy.IsPresent Boolean function PollFloppy
floppyPresence = present

Floppy.Write procedure UpdateFloppy

Floppy.Read procedure ReadFloppy

Floppy.CheckWrite procedure currentFloppy = writtenFloppy

Floppy.CurrentFloppy retrieval function value of currentFloppy

Floppy.Init procedure TISStartup (partial)

In addition to the initialisation detailed in the Formal Design the Floppy.Init procedure will determine the
drive letter for the floppy drive and ensure that the Temp directory used by the Floppy package is
present.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 55 of 68

3.2.12 Keyboard

This variable package maintains local state associated with the keyboard and accesses the keyboard
via system calls.

3.2.12.1 Types

Ada Type type classification Z type

Keyboard.DataT string KEYBOARD

3.2.12.2 State

Ada Package state type Z State

Keyboard.State private keyedDataPresence

3.2.12.3 Operations

Ada Operation operation type Z Operation

Keyboard.Poll procedure PollKeyboard

Keyboard.DataIsPresent function keyedDataPresence = present

Keyboard.Read procedure read keyboard

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 56 of 68

3.2.13 KeyStore

This package provides the TIS core interface to the Crypto Library.

3.2.13.1 State

Ada Package state type Z State

KeyStore.State private privateKey

There is no explicit state, this state models state associated with Cypto Library.

3.2.13.2 Operations

Ada Operation operation type Z Operation

KeyStore.Init procedure InitKeyStore
TISStartup (partial)

KeyStore.KeyMatchingIssuerPresent procedure keyMatchingIssuer ≠ nil

KeyStore.PrivateKeyPresent function privateKey ≠ nil

KeyStore.IssuerIsThisTIS function CertIssuerIsThisTIS

KeyStore.ThisTIS function (the privateKey).keyOwner

KeyStore.isVerifiedBy procedure isVerifiedBy

KeyStore.Sign procedure sign

KeyStore.AddKey procedure UpdateKeyStore

KeyStore.Delete procedure -

The initialise operation will initialise the underlying crypto library.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 57 of 68

3.2.14 Latch

Variable Package maintaining local representation of the state of the Latch and interfacing to the Latch
API.

3.2.14.1 Types

Ada Type type classification Z type

Latch.T enumeration LATCH

3.2.14.2 State

Ada Package state type Z State

Latch.State - currentLatch
latchTimeout

3.2.14.3 Operations

Ada Operation operation type Z Operation

Latch.UpdateDevice procedure UpdateLatch

Latch.UpdateInternalLatch procedure UpdateInternalLatch

Latch.Init procedure InitDoorLatchAlarm (partial)

Latch.SetTimeout procedure SetUnlockDoorTimeouts
(partial)
SetLockDoorTimeouts

(partial)

Latch.IsLocked function currentLatch = locked

Latch.Failure procedure DoorLatchFailure
(partial)

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 58 of 68

3.2.15 Screen

This variable package maintains the local screen state and interfaces to the screen via system calls.

3.2.15.1 Types

Ada Type type classification Z type

Screen.MsgText enumeration SCREENTEXT

3.2.15.2 State

Ada Package state type Z State

Screen.State Screen.MsgText currentScreen.screenMsg

3.2.15.3 Operations

Ada Operation operation type Z Operation

Screen.UpdateScreen procedure UpdateScreen

Screen.SetMessage procedure set currentScreen.screenMsg

Screen.Init procedure InitIDStation (partial)

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 59 of 68

3.2.16 TokenReader

Variable package managing the interface to the token readers.

3.2.16.1 State

Ada Package state type represents

TokenReader.State private persistent state maintained by
the SPARK subsystem relating
to the token reader (includes
userTokenPresence and
adminTokenPresence)

3.2.16.2 Operations

This is the package within the secondary SPARK system. As such there is no correspondence between Z
operations and implemented operations. Here we state the purpose of each operation rather than map
it to the Z.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 60 of 68

Ada Operation operation type Purpose

TokenReader.Poll procedure Polls the specified reader for the
status of the token within that
reader. Records status information
within the TokenReader.State.

TokenReader.TheTokenPresence function Retrieves the current presence of a
token in the specified reader.

TokenReader.TheTokenID function Retrieves the current token Id of a
token in a specified reader.

TokenReader.TheTokenTry function Retrieves the current status of the
token in the specified reader, in
terms of noToken, badToken or
goodToken.

TokenReader.GetCertificate procedure Reads the required token from the
specified reader.

TokenReader.WriteAuthCert procedure Writes the supplied auth certificate
to the User Token.

TokenReader.Init procedure Initialises the token readers,
obtaining a list of all the connected
readers.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 61 of 68

3.2.17 UserEntry

This variable package maintains the state and controls the state-machine managing the User Entry
activity.

3.2.17.1 Types

Ada Type type classification Z type

UserEntry.Status enumeration STATUS

3.2.17.2 State

Ada Package state type Z State

UserEntry.State private status
fingerTimeout
tokenRemovalTimeout

3.2.17.3 Operations

Ada Operation operation type Z Operation

UserEntry.CurrentActivityPossible Boolean function CurrentUserEntryActivityPossible

UserEntry.CanStart Boolean function UserEntryCanStart

UserEntry.InProgress Boolean function UserEntryInProgress

UserEntry.Progress procedure TISProgressUserEntry

UserEntry.StartEntry procedure TISStartUserEntry

UserEntry.DisplayPollUpdate procedure DisplayPollUpdate

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 62 of 68

3.2.18 UserToken

Variable package holding and managing the user token state.

3.2.18.1 State

Ada Package state type Z State

UserToken.State private currentUserToken
userTokenPresence

3.2.18.2 Operations

Ada Operation operation type Z Operation

UserToken.Poll procedure PollUserToken

UserToken.UpdateAuthCert procedure UpdateUserToken

UserToken.ExtractUser function extractUser

UserToken.IsPresent Boolean function userTokenPresence = present

UserToken.ReadAndCheckAuthCert procedure ReadUserToken
UserTokenWithOKAuthCert

UserToken.ReadAndCheck procedure ReadUserToken
UserTokenOK
UserTokenNotOK

UserToken.AddAuthCert procedure AddAuthCertToUserToken

UserToken.GetIandATemplate retrieval function value of
iandACertContents.templateC

UserToken.GetClass retrieval function value of
authCertContents.clearance.Class

UserToken.Init procedure -

UserToken.Clear procedure ClearUserToken

The operation ExtractUser makes use of Cert.ID.ExtractUser and Cert.Attr.ExtractUser.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 63 of 68

3.3 Utility Layers

3.3.1 CertProcessing

This utility layer provides operations associated with certificate processing.

3.3.1.1 Operations

Ada Operation operation type Z Operation

CertProcessing.ExtractIDCertData procedure extractIDCert

CertProcessing.ExtractPrivCertData procedure extractPrivCert

CertProcessing.ExtractIACertData procedure extractIandACert

CertProcessing.ExtractAuthCertData procedure extractAuthCert

CertProcessing.ConstructAuthCert procedure constructAuthCert

CertProcessing.ObtainSignatureData procedure retrieve signature

CertProcessing.AddAuthSignature procedure sets signature

3.3.2 Configuration

This utility layer provides operations associated with managing configuration data.

3.3.2.1 Operations

Ada Operation operation type Z Operation

Configuration.UpdateData procedure FinishUpdateConfigData

Configuration.Initialise procedure TISStartUp (partial)
InitConfig

The initialise operation reads the configuration data from file, if one is available otherwise it sets
configuration data to the default value.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 64 of 68

3.3.3 Enrolment

This utility layer provides operations associated with the enrolment of the TIS. This will validate file data
and insert it into the KeyStore.

3.3.3.1 Operations

Ada Operation operation type Z Operation

Enrolment.Validate procedure ValidateEnrolmentData

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 65 of 68

3.3.4 File

This utility layer provides types and operations for basic file manipulation.

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 66 of 68

3.3.4.1 Types

Ada Type type classification Z type

File.T private FLOPPY

3.3.4.2 Operations

Ada Operation operation type Z Operation

File.OpenRead procedure -

File.OpenWrite procedure -

File.OpenAppend procedure -

File.Close procedure -

File.SetName procedure -

File.GetName procedure -

File.Create procedure -

File.Exists function -

File.Construct function -

File.EndOfFile function -

File.EndOfLine function -

File.GetChar procedure -

File.GetString procedure -

File.GetInteger procedure -

File.PutInteger procedure -

File.PutString procedure -

File.SkipLine procedure -

File.NewLine procedure -

File.Compare procedure -

File.Copy procedure -

File.CreateDirectory procedure -

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 67 of 68

3.3.5 Poll

This utility layer provides operations to manage the polling of external data.

3.3.5.1 Operations

Ada Operation operation type Z Operation

Poll.Activity procedure TISPoll

3.3.6 Updates

This utility layer provides operations for updating the environment.

3.3.6.1 Operations

Ada Operation operation type Z Operation

Updates.Activity procedure TISUpdate

Updates.EarlyActivity procedure TISEarlyUpdate

Tokeneer ID Station
INFORMED Design

S.P1229.50.2
Issue: 1.2

 Page 68 of 68

Document Control and References

Praxis High Integrity Systems Limited, 20 Manvers Street, Bath BA1 1PX, UK.
Copyright © (2003) United States Government, as represented by the Director, National Security
Agency. All rights reserved.

This material was originally developed by Praxis High Integrity Systems Ltd. under contract to the
National Security Agency.

Changes history

Issue 0.1 (23 May 2003): Initial issue for internal review.

Issue 0.2 (30 June 2003): Included second SPARK subsystem.

Issue 1.0 (4 July 2003): Updates following internal review, S.P1229.7.9.

Issue 1.1 (22 August 2003): Updates due to fault reports S.P1229.6.11-12, 17, 20, 25-27, 29, 34, 36,
37, 39-40, 45.

Issue 1.2 (19 August 2008): Updated for public release.

Changes forecast

None. This document is now under change control.

Document references

1 INFORMED Design Method for SPARK, S.P0468.42.2, Issue 2.0, October 2001

2 TIS Formal Design, S.P1229.50.1.

