
Deep of Enumeration Algorithms

2. Amortized Analysis on
Enumeration Algorithm

• Mechanism of amortization
• Basic (toy) case (elimination ordering)
• Local amortization (path)
• Biased (general) case (matching, k-subtree)

2-1 Better Analysis

There is an Algorithm

• Suppose that there is an enumeration algorithm UNO.
 we want to know time complexity of UNO (output polynomiality)

• What is needed?
• What will we obtain as a result?

• We assume that UNO is a tree-shaped recursion algorithm
 (the structure of the recursion is a tree)

and the problem is combinatorial.
 (has at most 2n solutions)
 ・

・
・

Iteration = O(X)

• We now know that each iteration takes O(X) time.
 Can we do something?

 � No. Possibility for
 “exponentially many iterations, with few solutions”

ex) feasible solutions for SAT,
with branch-and-bound algorithm

・
・
・

O(X)

O(X)

Solution for Each

• We now know that each iteration outputs a solution.
 Can we do something?

 � Yes! #solutions = #iterations
 “O(X) time for each solution”

・
・
・

O(X)

O(X)

Solutions at Leaves

• We now know that at each leaf, a solution is output.
 Can we do something?

ex) s-t paths, spanning trees, …

 � No. Possibility for
 “exponentially many inner
 iterations, with few leaves”

・
・
・

O(X)

O(X)

EXP. many

Bounded Depth

• We now know that the height of recursion tree is at most H
Can we do something?

� YES! [#iterations] < [#solutions] × [height]
 “O(X・H) time for each solution”

・
・
・

O(X)

O(X) O(H)

At least Two Children

• Instead of the height, we now know that each non-leaf iteration
 has at least two children
 Can we do something?

 � YES! [#iterations] < 2 × [#solutions]
 “O(X) time for each solution”

・
・
・

O(X)
two

two two

Good Three Cases

• These three cases are typical in
which we can bound the time
complexity efficiently

• In each case, the time complexity

for an iteration depends on
maximum computation time on
an iteration

• If we want to do better,
 we have to use amortized analysis
 (average computation time of
 an iteration)

・
・
・

two
two two

・
・
・

・
・
・

2-2 Basic Analysis

Bottom-wideness

• An iteration of enumeration algorithm generates recursive calls
for solving “subproblems”

• Subproblems are usually smaller than the original problem

� Many bottom level iterations take short time, few iterations

take long time (we call bottom-wideness)

• Can we do something better?

 ・

・
・

long
middle

short short
shortshort

middle

Bad Case

• An iteration of enumeration algorithm generates recursive calls
for solving “subproblems”

• Subproblems are usually smaller than the original problem

� Many bottom level iterations take short time, few iterations

take long time

• Can we do something better?

� No. not sufficient
 in the right case, an iteration
 takes O(n) time on average

1

1

1

1

1

n
n-1

n-2

2

・
・
・

Balanced

• The recursion tree was biased. If balanced?

� No. not sufficient
 in the right case, an iteration
 takes O(n) time on average

n
n-1 n-1

n-2 n-2

1 1 1 1 1

What is sufficient to reduce the amortized time complexity?

Sudden Decrease

• In the cases, sudden decrease occurs.
time for parent and child differ much

� We shall clarify good
 characterization for
 “no sudden decrease”

• Then, what is good?

n
n-1 n-1

n-2 n-2

1 1 1 1 1

1

1

1

1

1

n
n-1

n-2

2

・
・
・

Toy Case

• If any iteration has two children, and the computation time decreases
constantly, the amortized computation time will be reduced

Ex)
 n + 2(n-1) + 4(n-2) +…+ 2n-1•2 + 2n•1
 2•2n

• This holds for any polynomial

 {Σ 2n-i poly(i) } / 2•2n = O(1)

・
・
・

n
n-1 n-1

n-2 n-2

1 1 1 1 1

computation time

#iterations

= O(1)

Analysis

• This holds for any polynomial of the form poly(i) = i2, i3 ,…
 { Σ 2n-i poly(i) } / 2•2n = O(1)

 � Compare the computation time on adjacent levels
 2n-(i+1) poly(i+1) / 2n-i poly(i) = poly(i+1) /

2•poly(i)

• There are constants α < 1 s.t.
poly(i+1) / 2•poly(i) < α for any i > 0

・
・
・

n
n-1 n-1

n-2 n-2

1 1 1 1 1

If bottom level iteration takes 1 unit
time,
total computation time < 2n (1 / (1-α))

Generalization of the Toy Case

• Assume that poly(i) is an arbitrary polynomial
• There are constant δ and α < 1 s.t.
 poly(i+1) / 2•poly(i) < α for any i > δ

• When i < δ, poly(i) is constant, thus any iteration on level
 below δ takes constant time
• For i ≥ δ ,
 { Σi ≥δ 2n-i poly(i) } / 2•2n(n-δ) = O(1)

・
・
・

n
n-1 n-1

n-2 n-2

1 1 1 1 1

Therefore, amortized computation
time for one iteration is O(1)

More Than Two Children

• Consider cases that an iteration may generate more than two
recursive calls (so, iterations have three or more children)

• Let N(i) be the number of iterations in level i
 � computation time on level i is bounded by Σ N(i) poly(i)

• Compare adjacent levels
N(i+1) poly(i+1) / N(i) poly(i)
 ≤ poly(i+1) / 2•poly(i)

・
・
・

n
n-1

n-2

1 1 1 1 1

・
・
・Thus, in the same way, we can

show amortized computation
 time for one iteration is O(1)

Application

• You may think this is too much trivial to enumeration algorithms

• However, surprisingly, there are applications

• Consider the enumeration of
 elimination orderings

Elimination ordering
for given a structure (graph, set, etc.)
a way of removing its elements one by one until the structure will

be empty, with keeping a given property

・
・
・

n
n-1 n-1

n-2 n-2

1 1 1 1 1

Elimination Ordering for Connectivity

Ex) For given a connected graph G=(V,E), remove vertices one by
one with keeping the connectivity

• We can enumerate this elimination
 ordering by simple backtracking

• Each iteration takes O(|V|2) time

Iter (G, X)
1. if G is empty then output X
2. for each vertex v in G,
 if G-v is connected then call Iter (G-v, X+v)

Necessary Condition

(1) For any connected graph, there are at least two vertices whose
removals are connected

 � Each (internal) iteration has at least two children

(2) Computation time on an iteration in level i is O(i2)
 � Amortized computation time of
 and iteration is O(1) time

Iter (G, X)
1. if G is empty then output X
2. for each vertex v in G
 if G-v is connected then
 call Iter (G-v, X+v)

Small Pit Falls

 How to output X in O(1) time?
 � output X by the difference from the previously output one

 Since the number of additions and deletions is linear in the number

of iterations, the amortized output time is O(1)

 How to give G and X to the recursive call in O(1) time?
 � always update them, and give them by pointers to G and X

Before the recursive call, we remove v and adjacent edges from G,

and add v to X
After the recursive call, we add v and adjacent edges to G, and
remove v from X. This doesn’t increase the time/space complexity

Q

Q

Other Elimination Ordering

• There are many kinds of elimination orderings
 + perfect elimination ordering (chordal graphs)
 + strongly perfect elimination ordering (chordal graphs)
 + vertex on the surface of the convex hull (points)
 …
 + edge coloring of bipartite graph can be also solved

• At least, there proposed constant time algorithms for the first two
 (technical, to achieve amortized constant time for each iteration)

• We can have the same results with very very simple algorithms

2-3 Amortize by Children

Biased Recursion Trees

• The previous cases are something perfect
 + the height (depth) is equal at everywhere
 + computation time depends on the height

• We want to have stronger tools
 that can be applied to biased cases

・
・
・

n
n-1 n/2

n-2 n/4

1 1 1 1 1

Well-known Case

• Let T(x) be the computation time on iteration x

• If every child takes at most T(x) / α, for some α > 1
 the height of the tree is O(log n)

 + useful in complexity analysis
 + however, #iterations is bounded by
 polynomial (not fit for enumeration)

・
・
・

n
n/3 n/2

n/6 n/4

1 1 1 1 1

We need another idea

Local Amortization

• If #children is large, amortized time complexity will be small
even though sudden decrease occurs

• Let |Chd(x)| be #children of iteration x,
 and assign computation time T(x) to its children

 � each child receives T(x) / |Chd(x)|

• The time complexity of an iteration is
 O(max x { T(x) / (|Chd(x)| + 1) })

• We can use #grandchildren instead of #children

10

2

22

2 2 2 2

Estimating #(Grand)Children

• This analysis needs to estimate #children (and #grandchildren)
 this will be a technical part of the proof

 + estimate by the degree of the pivot vertex
 + #edges in a cycle
 + #edges in a cut…

・
・
・

Enumeration of s?-path

Problem: given a graph G=(V,E), and a vertex s, enumerate all
simple paths one of whose end is s

• Simply, by back tracking, we can solve

• Each iteration takes O(d(t)) where d(t) is the degree of t
 � the time complexity of an iteration is O(|V|)

Iter (G=(V,E), t, X)
1. output X
2. for each vertex v in G adjacent to s
 call Iter (G-t, v, X+v)

s

Amortization

+ Each iteration takes O(d(t)) time
+ Each iteration generates d(t) recursive calls

• Thus, max x { T(x) / (|Chd(x)| + 1) } = O(1),
 and the amortized time complexity of
 an iteration is O(1)

Iter (G=(V,E), s, X)
1. output X
2. for each vertex v in G adjacent to s
 call Iter (G-s, v, X+v)

s

Other Problems

• By using #grandchildren, the complexity on the enumeration
algorithms for the following structures are established

+ spanning trees of a given graph O(|V|) � O(1)
 + trees of size k in a given graph O(|E|) � O(k)

 etc…

2-4 Push out Amortization

Computation time “Increases”

• In the “toy” cases, the key property was that
 “the total computation time on each level increases with a
 constant factor, by going to a deeper level “

 2n-(i+1) poly(i+1) / 2n-i poly(i) = poly(i+1) / 2•poly(i)

• It seems that “increase of computation time is good for us”
 (it implicitly forbids “sudden decrease”)

• Since the tree is biased, apply this idea locally
 --- parent and child (or descendants)

Local Increase

• In the “toy” cases, we compare the total computation time on a
level and that on the neighboring level

• Instead of that, we compare the computation time of a parent,

and the total time on its children

 � the condition of the toy case is implemented as follows

 Σ child z of x T(z) ≥ αT(x) for some α > 1

n
n-1 n/2

We will characterize good cases
 by this condition

Formula

• T* : the maximum computation time on a leaf
• C(x) : sum of the computation time of children of x
• a constant α > 1 s.t., for any (inner) iteration x, C(x) ≥ αT(x)

Theorem: Amortized computation time of each iteration is O(T*)

Proof: give one’s computation time to its children, so that
 each child z receives T(x) • { T(z) / C(x) }
 (just move, for analysis)
Each child gives the received computation time
and its own computation time to
 its children (so, grandchildren)

9

4 8

63

Induction

• Each child gives the received computation time and its own
computation time to its children (so, grandchildren)

Claim: under this rule, any iteration z receives
 at most T(z) /(α-1) from its parent
(intuitively, T(z) / α from parent, T(z) / α2 from grandparent, ...)

• Suppose that an iteration x satisfies the condition
� Then, its child z receives at most
{ T(z) / C(x) } • { T(x) + T(x) / (α-1) }
= { T(z) / C(x) } •{ T(x) α / (α-1) }
≤ { T(z) / α } • { α / (α-1) } 　= T(z) / (α-1)

9

4 8

63

9 (α+1) (1/α)

T(x)/ C(x) ≥ α

Amortized Time on Leaf

Claim: under this rule, any iteration z receives
 at most T(z) / (α-1) from its parent

 � Each leaf receives T* / (α-1) time from its parent

• After this move, only leaves have computation time
• Each leaf has T* + T* / (α-1) = O(T*) time

� amortized time complexity of an iteration is O(T*)

9

4 8

63

9 (α+1) (1/α)

Formulation

• If a recursion algorithm satisfies that

 + the maximum computation time on a leaf is T*
 + there exists a constant α > 1 such that any internal iteration x
 satisfies Σ child z of x T(z) ≥ αT(x)

then, the amortized time complexity of an
 iteration is O(T*)

9

4 8

63

9 (α+1) (1/α)

Modification: Formulation
• For a recursion algorithm and a constant α > 1, if any its iteration x

satisfies either

 (1) its computation time is O(T*) (leaf, one-child iteration, etc)
 (2) satisfies Σ child z of x T(z) ≥ αT(x)
then, the amortized time complexity of an iteration is O(T*)

• We can further add the following condition
 … or, (3) x has Ω(T(x) / T*) children
(assign O(T*) for each child, that will not
 be given to grand children)

9

4 8

63

9 (α+1) (1/α)

Once More: Formulation

• For a recursion algorithm and a constant α > 1,
 if any its iteration x satisfies either

 (1) T(x) = (T*),
 (2) Σ child z of x T(z) ≥ αT(x), or , or
 (3) x has Ω(T(x) / T*) children,
 or output Ω(T(x) / T*) solutions

then, the amortized time complexity of
 an iteration is O(T*)

9

4 8

63

9 (α+1) (1/α)

2-5 Matching Enumeration

Problem: for given a graph G = (V, E), output all matchings of G

matching: an edge subset s.t.
 no two edges are adjacent

Example: Enumeration of Matchings

terms
　d(v): the degree of v
　G-e: the graph obtained from G by removing e
　G+(e): the graph obtained from G by removing edge e and edges
adjacent to e
　G-u: the graph obtained from G by removing vertex u and edges
incident to u
　

Iter (G=(V,E), M)
1. if E =φ then output M; return
2. choose an edge e of G
3. call Iter (G-e, M) // enumerate those not including e
4. call Iter (G+(e), M∪∪e) // enumerate those including e

Basic Algorithm

• Clearly, correct
• An iteration takes O(|V|) time
• Leaf iterations output solutions
• Any iteration generates two recursive calls,
 thus #iterations / 2 ≤ #matchings
 Therefore, O(|V|) time for each matching

Observation

• An iteration takes O(d(u)+d(v)) time, in detail (where e=(u,v))

• #edges in the input graph of children is
 at least |E|-1, |E| - d(u) - d(v), respectively

• Hereafter, for the sake of clear analysis, we estimate the
 computation time of an iteration by c (|E| +1) = O(|E|)

 u

v

Other Recursion

• For an iteration x, if an edge e=(u,v) satisfies d(u)+d(v) < |E| /2,
 Σchild z of x T(z) ≥ 1.5 T(x) - O(T*) � (2) is satisfied

• Otherwise, there is a vertex u s.t. d(u) ≧≧ |E| /4
• We generate recursive calls for all edges incident to u

u

v
A. choose u s.t. d(u) ≧≧ |E| /4
B. for each e=(u,v), call iter (G+(e), M∪∪e)
C. call iter (G-u, M)

In this case, |E| /4 recursive calls are generated,
 � #children is at least |E| /4 � (3) is satisfied

Overall Algorithm

u

v

Iter (G=(V,E), M)
1. if E =φ then output M; return
2. if an edge e = (u,v) s.t. d(u)+d(v) < |E| /2
3. call Iter (G-e, M)
4. call Iter (G+(e), M∪∪e)
5. else
6. choose u s.t. d(u) ≧≧ |E| /4
7. call iter (G-u, M)
8. for each e=(u,v), call Iter (G+(e), M∪∪e)
9. end if

Case Analysis

• For an iteration x

+ if x is a leaf, then T(x) = O(T*) � (1) is satisfied

+ otherwise, if an edge e=(u,v) satisfies d(u)+d(v) < |E| /2,
 Σchild x of X T(z) ≥ 1.5 T(x) - O(T*) � (2) is satisfied

 + otherwise, |E| /4 recursive calls are generated,
 � #children is at least |E| /4 � (3) is satisfied

In any case, iteration x satisfies either (1), (2), or (3)
 � amortized time complexity of iteration is O(T*) = O(1)

2-6 k-subtree Enumeration

k-subtree

Problem: given a graph G=(V,E), vertex r and k, enumerate all
subtrees of G having exactly k edges

• Correctness is OK. Computation time of an iteration is
 O(d(r)+d(v)+ k2), thus O(k (d(r)+d(v) + k2)) per solution

Iter (G=(V,E), r, X)
1. if |X| = k then output X; return
2. choose an edge e incident to r
3. if the connected component of G-e including r
has at least k-|X|+1 vertices then call Iter (G-e, r, X)
4. call Iter (G’, r, X∪∪e) where G’ is obtained by
 contracting e and removing selfloops from G

Time and Input

• Check in 3 takes O(|V|+|E|) time, but can be bounded by O(k2)
 � Actually, some parts of G is unnecessary
• Sometime, only one recursive call is generated (if G is a path)

Iter (G=(V,E), k, r, X)
1. if k = 0 then output X; return
2. choose and edge e incident to r
3. if the connected component of G-e including r
has at least k+1 vertices then call Iter (G-e, k, r, X)
4. call Iter (G’, k-1, r, X) where G’ is obtained
 by contracting e and removing selfloops from G

• Rewrite the algorithm

Speed up by Trimming
• If the input is small, the computation time will be short
 � remove unnecessary parts from G

• Edges included in no k-subtree is unnecessary
� edges whose distances to r is more than k (k-|X|)

• Edges included in all k-subtree is redundant
� Such edges e are bridges, and c(G, e, r) < k+1,
 where c(G, e, r) is the #vertices in the connected
 component of G-e that includes r

All edges of both types can be found in O(|V|+|E|) time

Trimming before Recursive Call

• When we generate a recursive call, we generate its input graph,
 trim it, and then pass it to the recursive call

• Intuitively, by this trimming, sudden decreases do not occur.
 In precise, there is no case that both children are so small

k=1 k=1

Small Children

• Consider the cases in which child inputs a small graph

• Recursive call for k-subtrees not including e
　 (a) some edges over e will be unnecessary
　 (b) if e is a bridge, some edges not over e would be redundant

• Recursive call for k-subtrees including e
　 (c) some edges of distance k to r
 becomes unnecessary
　 (d) edges parallel to e becomes selfloops,
 so unnecessary

Small Children

• Recursive call for k-subtrees not including e
 (a) some edges over e may never be used
 (b) if e is a bridge, some edges not over e would be always used
• Recursive call for k-subtrees including e
 (c) the edges not over e of distance k to r are never used
 (d) edges parallel to e becomes selfloops, so are never used

• If there are many these edges,
 condition (2) doesn’t hold

• We need a modification so that
 condition (3) will be satisfied

Case (c)

(c) some edges of distance k to r are never used

 + k-subtrees including such edges are all paths,
 whose ends are the edges

 + We enumerate all these paths,
 starting r and ending at the unnecessary edges

 + This can be done in O(1) time for each path

� (3) is satisfied

Case (d)

(d) edges parallel to e becomes selfloops, so unnecessary

 + We generate all subproblem of
 enumerating k-subtrees of including each parallel edge

 + The input graph for each subproblem is equivalent
 to that of e

 + Each recursive call is generated in O(1) time
 for each

� (3) is satisfied

Cases (a) and (b)

(b) occur only when e is a bridge

• We trace e, and go further until we meet a 2-connected component,
or a vertex of degree 1 (if e is in a 2-connectted component, e = eh)
• After the meet, we trace one more edge. Obtained path is e1,e2,
…,eh

• Make subproblems of k-subtrees of
 + not including e1
 + including e1 but not e2
・・・
 + including e1,…,eh-1 but not eh
 + including all e1,…,eh

Generating Subproblems

 + not including e1
・・・
 + including e1,…,eh-1 but not eh
 + including all e1,…,eh

• For last two problems, we spend O(|V|+|E|) time for the last two

• We iteratively make the remaining, in total O(|V|+|E|) time
　+ no parallel edge to ei
　+ all edges over ei are unnecessary

If h > |E|/10, (3) is satisfied

Generating Subproblems (2)

• for the subproblem of including e1,…,ei-1 and not including ei,
 (a) remove all edges over ei
 (b) contract all bridges f not over ei s.t. c(G-ei, f, r) < k+1 �
 c(G, ei, r) - (|V| - c(G, f, r)) < k-1
 (c) remove all edges whose distance to r is k-i
 (d) there is no parallel edge to ei, no need to care

• When we generate subproblems
 for e1,…,eh-1, the edges
monotonically increases / decreases
 � Total time is O(|V|+|E|)

Satisfying the Conditions
• Consider the case that
 the last vertex is of degree 1

[1] not including e1
・・・
[h] including e1,…,eh-1 but not eh
[h+1] including all e1,…,eh

in [h] and [h+1], + (a) and (d) never occur
 + (b) may occur, but for at most one edge
 + if there are (|E|/10) edges of condition (c),
 according to the previous cases, (3) will be satisfied
 + if not, at least 9|E|/10 – h-2 edges remain � (2) is satisfied

Satisfying the Conditions (2)

• The case of 2-connected component

[1] not including e1
・・・
[h] including e1,…,eh-1 but not eh
[h+1] including all e1,…,eh

in [h], (b), (d) never occur
 + if there are (|E|/10) edges of condition (c) ,
 according to the previous cases, (3) will be satisfied
 + if there are more than (9|E|/10 – h-2) / 2 edges of condition (a)
 choose another edge from the component as eh
 � at most (9|E|/10 – h-2) / 2 edges satisfy condition (a)

Satisfying the Conditions (2)

• The case of 2-connected component

[1] not including e1
・・・
[h] including e1,…,eh-1 but not eh (> (9|E|/10 – h-2)/2 edges)
[h+1] including all e1,…,eh

in [h+1], (a) and (b) never occur
 + if there are many (|E|/10) edges of condition (c) or (d),
 according to the previous cases, (3) will be satisfied
+ if not, at least 8|E|/10 – h-2 edges remain

Satisfying the Conditions

[1] not including e1
・・・
[h] including e1,…,eh-1 but not eh (> (9|E|/10 – h-2)/2 edges)
[h+1] including all e1,…,eh (> 8|E|/10 – h-2 edges)

In the case that h < |E|/10 holds, the sum of the sizes (#edges)
of [h] and [h+1] is at least
 (9|E|/10 – h-2)/2 + 8|E|/10 – h-2
 ≥ (8|E|/10 –2) /2 + 7|E|/10 -2
 ≥ 4|E|/10 –1 + 7|E|/10 -2
 = 11|E| / 10 -3 � (2) is satisfied!!

Thus, an iteration = O(1) time on average

Conclusion

• Mechanism of amortization
 - enumeration algorithm spends much time on bottom level

• Basic (toy) case (elimination ordering)
 - even toy cases are interesting!

• Local amortization (path enumeration)
 - cost for a parent is assigned to children and grandchildren

• Biased (general) case (matching enumeration)
 - just modify the algorithm so that the conditions are satisfied

References

 Matching
T. Uno, Algorithms for Enumerating All Perfect, Maximum and Maximal

Matchings in Bipartite Graphs, ISAAC97, LNCS 1350, 92-101 (1997)
T. Uno, A Fast Algorithm for Enumerating Bipartite Perfect Matchings,

ISAAC2001, LNCS 2223, 367-379 (2001)
T. Uno, A Fast Algorithm for Enumerating Non-Bipartite Maximal Matchings, J.

National Institute of Informatics 3, 89-97 (2001)
 k-subtree
R. Ferreira, R. Grossi, R. Rizzi, Output-Sensitive Listing of Bounded-Size Trees

in Undirected Graphs, ESA2011, LNCS 6942, 275-286 (2011)
K. Wasa, Y. Kaneta, T. Uno, H. Arimura, Constant Time Enumeration of

Bounded-Size Subtrees in Trees and Its Application, COCOON2012, LNCS
7434, 347-359 (2012)

References

Spanning Trees
H. N. Kapoor and H. Ramesh, Algorithms for Generating All Spanning Trees of

Undirected, Directed and Weighted Graphs, LNCS 519, 461-472 (1992)
A. Shioura, A. Tamura and T. Uno, An Optimal Algorithm for Scanning All

Spanning Trees of Undirected Graphs, SIAM J. Comp. 26, 678-692 (1997)
T. Uno, An Algorithm for Enumerating All Directed Spanning Trees in a
 Directed Graph, ISAAC96, LNCS 1178, 166-173 (1996)
T. Uno, A New Approach for Speeding Up Enumeration Algorithms, ISAAC98,

LNCS 1533, 287-296 (1998)
T. Uno, A New Approach for Speeding Up Enumeration Algorithms and Its

Application for Matroid Bases, COCOON 99, LNCS 1627, 349-359 (1999)

Exercise 2

Elimination Ordering

2-1. For given a point set in a plane, consider an elimination
ordering obtained by iteratively removing the points in its
convex hull. Construct an enumeration algorithm for this
elimination ordering that runs in O(1) time for each solution.

2-2. A regular bipartite graph G=(V,E) of degree Δ always has

an edge colorings of Δ colors. Construct an algorithm for
enumerating such edge colorings of G in O(|V|) time for
each.

Elimination Ordering

2-3. A graph is chordal if it has no chordless cycle of length
greater than 3, equivalently, if it has a clique tree. The
vertices of a clique tree are maximal cliques of G, and if
clique Y is in the path between cliques Y and Z, Y∩Z is
included in X.

 A chordal graph always has a simplicial vertex, whose
neighbors compose a clique. A perfect elimination ordering
is obtained by iteratively removing simplicial vertices.

 Construct an algorithm for enumerating perfect elimination
ordering in O(1) time for each.

Elimination Ordering

2-4. For given a digraph (acyclic directed graph G), topological
ordering is an ordering of vertices such that each arc satisfies
that its head precedes its tail, in the ordering.

 Construct an algorithm for enumerating topological ordering
in

O(1) time for each. If it is difficult, explain why it is difficult.

Algorithms

2-5. Construct an algorithm for enumerating vertex subsets S in
the given graph such that S induces a connected graph
(induced graph is a subgraph of vertices of S and edges
connecting two vertices in S)

2-6. A path is chordless if no edge not included in the path

connects two vertices of the path. Construct an algorithm for
enumerating chordless paths in a given graph, such that one
of their ends are a given specified vertex s, whose amortized
time complexity is O(1)

Exercises

2-7. Construct an algorithm for enumerating spanning trees of a
given graph, in O(1) time for each.

2-8. Construct an algorithm for the following problem with time

complexity O(1) time for each.

For given a point set in a plane, enumerate all convex polygons

obtained by connecting the points.

2-9. A zig-zag sequence of a string of numbers is a subsequence

(a1,…,ak) so that a1 < a2 > a3 < a4 > a5 …holds. Construct
an algorithm for their enumeration running O(1) time for each.

