
11.3 Hash functions 265

? 11.3.3 Universal hashing
If a malicious adversary chooses the keys to be hashed by some fixed hash function,
then the adversary can choose n keys that all hash to the same slot, yielding an av-
erage retrieval time of ‚.n/. Any fixed hash function is vulnerable to such terrible
worst-case behavior; the only effective way to improve the situation is to choose
the hash function randomly in a way that is independent of the keys that are actually
going to be stored. This approach, called universal hashing, can yield provably
good performance on average, no matter which keys the adversary chooses.

In universal hashing, at the beginning of execution we select the hash function
at random from a carefully designed class of functions. As in the case of quick-
sort, randomization guarantees that no single input will always evoke worst-case
behavior. Because we randomly select the hash function, the algorithm can be-
have differently on each execution, even for the same input, guaranteeing good
average-case performance for any input. Returning to the example of a compiler’s
symbol table, we find that the programmer’s choice of identifiers cannot now cause
consistently poor hashing performance. Poor performance occurs only when the
compiler chooses a random hash function that causes the set of identifiers to hash
poorly, but the probability of this situation occurring is small and is the same for
any set of identifiers of the same size.

Let H be a finite collection of hash functions that map a given universe U of
keys into the range f0; 1; : : : ; m ! 1g. Such a collection is said to be universal
if for each pair of distinct keys k; l 2 U , the number of hash functions h 2 H

for which h.k/ D h.l/ is at most jH j =m. In other words, with a hash function
randomly chosen from H , the chance of a collision between distinct keys k and l
is no more than the chance 1=m of a collision if h.k/ and h.l/ were randomly and
independently chosen from the set f0; 1; : : : ; m ! 1g.

The following theorem shows that a universal class of hash functions gives good
average-case behavior. Recall that ni denotes the length of list T Œi !.

Theorem 11.3
Suppose that a hash function h is chosen randomly from a universal collection of
hash functions and has been used to hash n keys into a table T of size m, us-
ing chaining to resolve collisions. If key k is not in the table, then the expected
length E Œnh.k/! of the list that key k hashes to is at most the load factor ˛ D n=m.
If key k is in the table, then the expected length E Œnh.k/! of the list containing key k
is at most 1C ˛.

Proof We note that the expectations here are over the choice of the hash func-
tion and do not depend on any assumptions about the distribution of the keys.
For each pair k and l of distinct keys, define the indicator random variable

266 Chapter 11 Hash Tables

Xkl D I fh.k/ D h.l/g. Since by the definition of a universal collection of hash
functions, a single pair of keys collides with probability at most 1=m, we have
Pr fh.k/ D h.l/g " 1=m. By Lemma 5.1, therefore, we have E ŒXkl ! " 1=m.

Next we define, for each key k, the random variable Yk that equals the number
of keys other than k that hash to the same slot as k, so that
Yk D

X

l2T
l¤k

Xkl :

Thus we have
E ŒYk! D E

2

4
X

l2T
l¤k

Xkl

3

5

D
X

l2T
l¤k

E ŒXkl ! (by linearity of expectation)

"
X

l2T
l¤k

1

m
:

The remainder of the proof depends on whether key k is in table T .
! If k 62 T , then nh.k/ D Yk and jfl W l 2 T and l ¤ kgj D n. Thus E Œnh.k/! D

E ŒYk ! " n=m D ˛.
! If k 2 T , then because key k appears in list T Œh.k/! and the count Yk does not

include key k, we have nh.k/ D Yk C 1 and jfl W l 2 T and l ¤ kgj D n ! 1.
Thus E Œnh.k/! D E ŒYk !C 1 " .n ! 1/=mC 1 D 1C ˛ ! 1=m < 1C ˛.

The following corollary says universal hashing provides the desired payoff: it
has now become impossible for an adversary to pick a sequence of operations that
forces the worst-case running time. By cleverly randomizing the choice of hash
function at run time, we guarantee that we can process every sequence of operations
with a good average-case running time.

Corollary 11.4
Using universal hashing and collision resolution by chaining in an initially empty
table with m slots, it takes expected time ‚.n/ to handle any sequence of n INSERT,
SEARCH, and DELETE operations containing O.m/ INSERT operations.

Proof Since the number of insertions is O.m/, we have n D O.m/ and so
˛ D O.1/. The INSERT and DELETE operations take constant time and, by The-
orem 11.3, the expected time for each SEARCH operation is O.1/. By linearity of

11.3 Hash functions 267

expectation, therefore, the expected time for the entire sequence of n operations
is O.n/. Since each operation takes ".1/ time, the ‚.n/ bound follows.

Designing a universal class of hash functions
It is quite easy to design a universal class of hash functions, as a little number
theory will help us prove. You may wish to consult Chapter 31 first if you are
unfamiliar with number theory.

We begin by choosing a prime number p large enough so that every possible
key k is in the range 0 to p ! 1, inclusive. Let Zp denote the set f0; 1; : : : ; p ! 1g,
and let Z!

p denote the set f1; 2; : : : ; p ! 1g. Since p is prime, we can solve equa-
tions modulo p with the methods given in Chapter 31. Because we assume that the
size of the universe of keys is greater than the number of slots in the hash table, we
have p > m.

We now define the hash function hab for any a 2 Z!
p and any b 2 Zp using a

linear transformation followed by reductions modulo p and then modulo m:
hab.k/ D ..ak C b/ mod p/ mod m : (11.3)
For example, with p D 17 and m D 6, we have h3;4.8/ D 5. The family of all
such hash functions is
Hpm D

˚
hab W a 2 Z

!
p and b 2 Zp

!
: (11.4)

Each hash function hab maps Zp to Zm. This class of hash functions has the nice
property that the size m of the output range is arbitrary—not necessarily prime—a
feature which we shall use in Section 11.5. Since we have p ! 1 choices for a
and p choices for b, the collection Hpm contains p.p ! 1/ hash functions.

Theorem 11.5
The class Hpm of hash functions defined by equations (11.3) and (11.4) is universal.

Proof Consider two distinct keys k and l from Zp, so that k ¤ l . For a given
hash function hab we let
r D .ak C b/ mod p ;

s D .al C b/ mod p :

We first note that r ¤ s. Why? Observe that
r ! s # a.k ! l/ .mod p/ :

It follows that r ¤ s because p is prime and both a and .k ! l/ are nonzero
modulo p, and so their product must also be nonzero modulo p by Theorem 31.6.
Therefore, when computing any hab 2 Hpm, distinct inputs k and l map to distinct

268 Chapter 11 Hash Tables

values r and s modulo p; there are no collisions yet at the “mod p level.” Moreover,
each of the possible p.p!1/ choices for the pair .a; b/ with a ¤ 0 yields a different
resulting pair .r; s/ with r ¤ s, since we can solve for a and b given r and s:
a D

"
.r ! s/..k ! l/"1 mod p/

mod p ;

b D .r ! ak/ mod p ;

where ..k ! l/"1 mod p/ denotes the unique multiplicative inverse, modulo p,
of k ! l . Since there are only p.p ! 1/ possible pairs .r; s/ with r ¤ s, there
is a one-to-one correspondence between pairs .a; b/ with a ¤ 0 and pairs .r; s/
with r ¤ s. Thus, for any given pair of inputs k and l , if we pick .a; b/ uniformly
at random from Z!

p $ Zp, the resulting pair .r; s/ is equally likely to be any pair of
distinct values modulo p.

Therefore, the probability that distinct keys k and l collide is equal to the prob-
ability that r # s .mod m/ when r and s are randomly chosen as distinct values
modulo p. For a given value of r , of the p ! 1 possible remaining values for s, the
number of values s such that s ¤ r and s # r .mod m/ is at most
dp=me! 1 " ..p Cm ! 1/=m/ ! 1 (by inequality (3.6))

D .p ! 1/=m :

The probability that s collides with r when reduced modulo m is at most
..p ! 1/=m/=.p ! 1/ D 1=m.

Therefore, for any pair of distinct values k; l 2 Zp,
Pr fhab.k/ D hab.l/g " 1=m ;

so that Hpm is indeed universal.

Exercises
11.3-1
Suppose we wish to search a linked list of length n, where each element contains
a key k along with a hash value h.k/. Each key is a long character string. How
might we take advantage of the hash values when searching the list for an element
with a given key?
11.3-2
Suppose that we hash a string of r characters into m slots by treating it as a
radix-128 number and then using the division method. We can easily represent
the number m as a 32-bit computer word, but the string of r characters, treated as
a radix-128 number, takes many words. How can we apply the division method to
compute the hash value of the character string without using more than a constant
number of words of storage outside the string itself?

