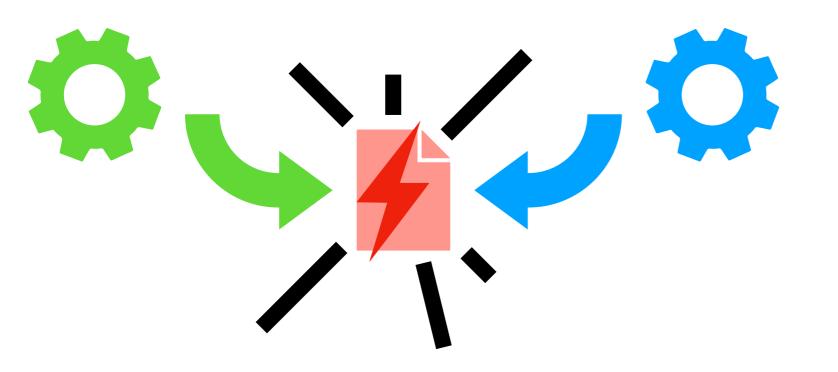
Linguaggi di Programmazione



Roberta Gori

Esercitazione #3

Ricorsione ben fondata

Definire usando la ricorsione ben fondata una funzione vars tale che data un' [Ex. 1] espressione aritmetica a ritorna l'insieme degli identificatori che appaiono nell'espressione aritmetica a. Poi provare per induzione sulle regole che

 $\forall a \in Aexp, \, \forall \sigma \in \Sigma, \, \forall n \in \mathbb{Z}$

 $\langle a, \sigma \rangle \to n$ im

implica

 $(\forall y \in vars(a). \sigma(y) = \sigma'(y)) \Rightarrow \langle a, \sigma' \rangle \to n).$

se due memorie coincidono su tutte le variabili che appaiono in un'espressione, allora valutando l'espressione nelle due memorie dà lo stesso risultato [Ex.

 Definire usando la ricorsione ben fondata una funzione vars tale che data una comando a ritorna l'insieme degli identificatori che appaiono a sinistra degli assegnamenti.

Poi provare per induzione sulle regole che

$$\langle c, \sigma \rangle \to \sigma'$$
 implice $\forall x \notin vars(c). \ \sigma(x) = \sigma'(x)$

se una variabile non appare in un'assegnamento allora il suo valore iniziale viene conservato nello store finale

Funzioni monotone e continue

[Ex. 3] Consideriamo l' $OPC_{\perp}(\wp(\mathbb{N}), \subseteq)$. Proviamo che per ogni set $S \subseteq \mathbb{N}$: 1. la funzione $f_S : \wp(\mathbb{N}) \to \wp(\mathbb{N})$ tale che $f_S(X) = X \cap S$ e' continua 2. la funzione $g_S : \wp(\mathbb{N}) \to \wp(\mathbb{N})$ tale che $g_S(X) = X \cup S$ e' continua [Ex. 4] Provare che ogni funzione che preserva il limite e' monotona.

 $[\mathbf{Ex. 5}] \text{ Sia } D = \{n \in \mathbb{N} \mid n > 0\} \cup \{\infty\} \text{ e } \Box \subseteq (D \times D) \text{ tale che}$

- per ogni $n, m \in D \cap \mathbb{N}$, definiamo $n \sqsubseteq m$ se n divide m;
- per ogni ' $x \in D$, definiamo $x \sqsubseteq \infty$.

 $E'(D, \sqsubseteq)$ un OPC_{\perp} ?

Punti fissi

[**Ex. 6**] Definiamo due funzioni $f_i : D_i \to D_i$ su due OPC D_i per $i \in \{1, 2\}$ (non necessariamente con bottom) tali che:

- 1. f_1 è continua, ha punti fissi ma non minimo punto fisso;
- 2. f_2 è continua e non ha punti fissi.