
DDAM, 2019
CONCEPTS ON SPARK STREAMING

Docente: Patrizio Dazzi



OVERVIEW

• Structured Streaming is a scalable and fault-tolerant stream processing engine
built on the Spark SQL engine. 

• Streaming computation represented in the same way of a batch computation
on static data. 

• The Spark SQL engine will take care of running it incrementally and continuously and 
updating the final result as streaming data continues to arrive. 

• You can use the Dataset/DataFrame API in Scala, Java, Python or R to express 
streaming aggregations, event-time windows, stream-to-batch joins, etc. 

• The computation is executed on the same optimized Spark SQL engine. 



PROPERTIES

• The system ensures end-to-end exactly-once fault-tolerance guarantees
through checkpointing and Write-Ahead Logs

• In short, Structured Streaming provides:

• fast,

• scalable, 

• fault-tolerant, 

• end-to-end exactly-once 

stream processing without the user having to reason about streaming.



EXACTLY-ONCE SEMANTICS

• When we say “exactly-once semantics,” what we mean is that:

• each incoming event affects the final results exactly once

• Even in case of a machine or software failure, there’s no duplicate data and no data 
that goes unprocessed.



SPARK STREAMING

• Structured Streaming queries are processed using a micro-batch processing 
engine, which processes data streams as a series of small batch jobs thereby
achieving end-to-end latencies and exactly-once fault-tolerance guarantees. 

• However, recently Spark introduced a new low-latency processing mode called
Continuous Processing, which can achieve end-to-end latencies as low as 1 
millisecond with at-least-once guarantees. 

• Without changing the Dataset/DataFrame operations in your queries, you will
be able to choose the mode based on your application requirements.



SCENARIO

• You want to maintain a running word count of text data received from a data 
server listening on a TCP socket. Do you know what a socket is ?

• Let’s see how you can express this using Structured Streaming.



LET’S START…

• First, we have to import the necessary classes and create a local SparkSession, 
the starting point of all functionalities related to Spark.



SPARK STREAMING (1)

• Next, let’s create a streaming DataFrame that represents text data received
from a server listening on localhost:9999, and transform the DataFrame to 
calculate word counts.



SPARK STREAMING (2)

• lines in DataFrame represents an unbounded table containing the streaming 
text data. 

• This table contains one column of strings named “value”, and each line in the 
streaming text data becomes a row in the table. 

• Note, that this is not currently receiving any data as we are just setting up the 
transformation, and have not yet started it. 

• Next, we have used two built-in SQL functions - split and explode, to split each
line into multiple rows with a word each. 

• In addition, we use the function alias to name the new column as “word”. 

• Finally, we have defined the wordCounts DataFrame by grouping by the unique
values in the Dataset and counting them. 

• Note that this is a streaming DataFrame which represents the running word 
counts of the stream.



SPARK STREAMING (3)

• We have now set up the query on the streaming data. 

• All that is left is to actually start receiving data and computing the counts. 

• To do this, we set it up to print the complete set of counts (specified by 
outputMode("complete")) to the console every time they are updated. 

• And then start the streaming computation using start().



SPARK STREAMING (4)

• After this code is executed, the streaming computation will have started in the 
background. 

• The query object is a handle to that active streaming query, and we have
decided to wait for the termination of the query using awaitTermination() to 
prevent the process from exiting while the query is active.



SPARK STREAMING (5)



PROGRAMMING MODEL

• The key idea in Structured Streaming is to treat a live data stream as a table
that is being continuously appended. 

• This leads to a new stream processing model that is very similar to a batch 
processing model. 

• You will express your streaming computation as standard batch-like query as
on a static table, and Spark runs it as an incremental query on the unbounded
input table. 



APPROACH

Consider the input data stream as the “Input Table”. Every
data item that is arriving on the stream is like a new row
being appended to the Input Table.



TRIGGER

• A query on the input will
generate the “Result Table”. 

• Every trigger interval, new rows
get appended to the Input Table, 
which eventually updates the 
Result Table. 

• Whenever the result table gets
updated, we would want to 
write the changed result rows
to an external sink.



OUTPUT MODES

• Complete Mode - The entire updated Result Table will be written to the external storage. It is
up to the storage connector to decide how to handle writing of the entire table.

• Append Mode - Only the new rows appended in the Result Table since the last trigger will be 
written to the external storage. This is applicable only on the queries where existing rows in 
the Result Table are not expected to change.

• Update Mode - Only the rows that were updated in the Result Table since the last trigger will
be written to the external storage. 

• Note that this is different from the Complete Mode in that this mode only outputs the rows that
have changed since the last trigger. 

• If the query doesn’t contain aggregations, it will be equivalent to Append mode.



• The first lines DataFrame is the input table, and the final wordCounts
DataFrame is the result table. 

• Note that the query on streaming lines DataFrame to generate wordCounts is
exactly the same as it would be a static DataFrame. However, when this query
is started, Spark will continuously check for new data from the socket
connection. 

• If there is new data, Spark will run an “incremental” query that combines the 
previous running counts with the new data to compute updated counts, as
shown below.



EXAMPLE DEPICTED



DATA MATERIALIZATION

• Note that Structured Streaming does not materialize the entire table. 

• It reads the latest available data from the streaming data source, processes it
incrementally to update the result, and then discards the source data. 

• It only keeps around the minimal intermediate state data as required to update 
the result (e.g. intermediate counts in the earlier example).

• This model is significantly different from many other stream processing 
engines.

• Many streaming systems require the user to maintain running aggregations
themselves, thus having to reason about fault-tolerance, and data consistency
(at-least-once, or at-most-once, or exactly-once). 

• In this model, Spark is responsible for updating the Result Table when there is
new data, thus relieving the users from reasoning about it. 


