
EXAMPLE ALGEBRA: INTEGER ARITHMETIC

DOMAIN: integers

OPERATORS: -, + , *, ...

EXPRESSIONS: e + ((2*a) + ((c + (-d)) * 5))

LAWS: Commutative, Associative, Distributive

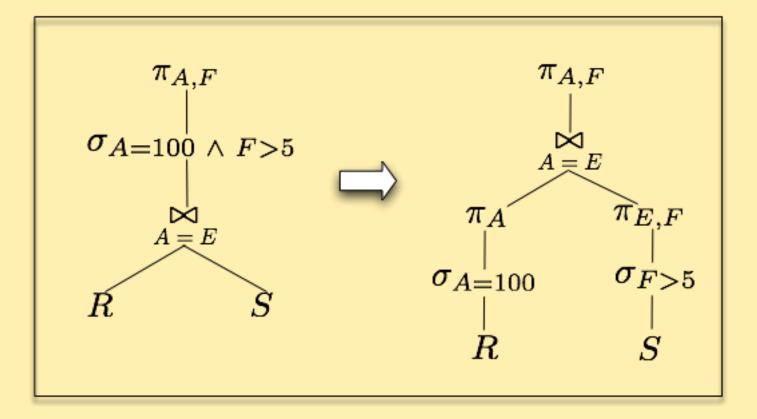
EQUIVALENCE RULES FOR SIMPLIFYING EXPRESSIONS

Examples for the relations R(A, B, C, D), S(E, F), and T(G, H):

$$\pi_{A}(\pi_{A,B}(R)) \equiv \pi_{A}(R)$$

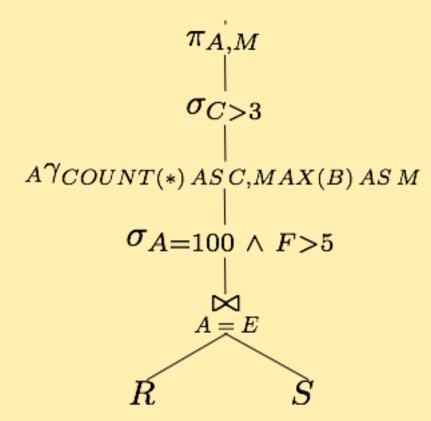
$$\sigma_{C_{1}}(\sigma_{C_{2}}(R)) \equiv \sigma_{C_{1}\wedge C_{2}}(R)$$

$$\Rightarrow \sigma_{C_{R}\wedge C_{S}}(R \bowtie S) \equiv \sigma_{C_{R}}(R) \bowtie \sigma_{C_{S}}(S)$$


$$R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T$$

$$(R \bowtie S) \equiv (S \bowtie R)$$

$$\sigma_{C_{X}}(_{X}\gamma_{F}(R)) \equiv _{X}\gamma_{F}(\sigma_{C_{X}}(R))$$


LOGICAL TREE (LOGICAL QUERY PLAN)

Let us consider R(A, B, C, D), S(E, F, G) and the expression: $\pi_{A,F}(\sigma_{A=100 \ \land F>5}(R \ \ A=E \ S))$

LOGICAL TREE (LOGICAL QUERY PLAN)

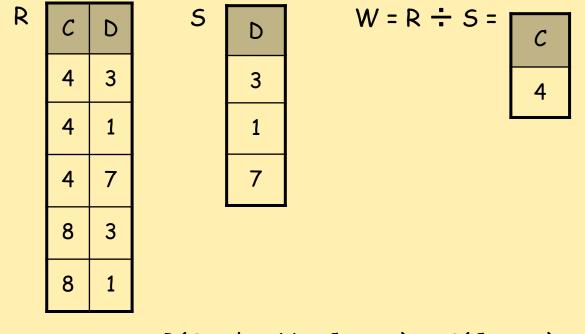
Let us consider R(A, B, C, D), S(E, F, G) and the expression: $\pi_{A,M}(\sigma_{C>3}(_{A}\gamma_{COUNT(*)} _{ASC,MAX(B)} _{ASM}(\sigma_{A=100 \land F>5}(R \land A=E S)))$

ASSIGNMENT IV: WRITE RELATIONAL EXPRESSIONS / LOGICAL TREES

Schema:

Students(Name: string, <u>StudCode</u>: string, City: string, BirthYear:int) Exams(<u>Subject</u>: string, <u>Candidate*</u>: string, Date: string, Grade: int)

- 1. Find the number of students who have passed the BSD exam with grade 30.
- 2. Find the name and student code of of students who have passed some exam.
- 3. Find the name, student code and the number of exams passed of students who have passed **some** exam.
- 4. Find the name and the student code of students who have passed 3 exams.
- 5. Find the name and the student code of students who have not passed exams.
- 6. Find the student code of students who have passed all exams.


RELATIONAL ALGEBRA DERIVED OPERATORS: DIVISION (+)

Integers:	M = 2	N = 3	0 = M ×	N = 6	0/N =	: 2		O/M = 3
Relations :	M _C		>	0 = M	XN	С	D	
	4	3	3			4	3	
	8	1				4	1	
		7	7			4	7	
						8	3	
	0 ÷ N = 🔽] o÷m				8	1	
			V - D			8	7	
	4	1	3		-			
	8		1					
			7					

DIVISION (÷)

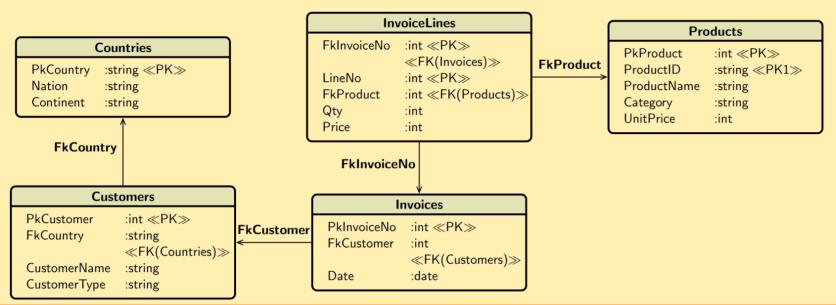
Let XY be the attributes of R and Y be the attributes of S. The W = $R \div S$ is a relation with attributes X such that:

 $W = R \div S = \{x \mid \forall s \in S. (x \circ s \in R)\}$

R(StudentNo, Course) S(Course)

TestStar DB on JRS

Schema:


InvoiceLines(<u>FkInvoiceNo</u>*, <u>LineNo</u>, FkProduct*, Qty, Price)

```
Invoices(PkInvoiceNo, Date, FkCustomer*)
```

Customers(PkCustomer, CustomerName, CustomerType, FkCountry*)

Countries(PkCountry, Nation, Continent)

Products(PkProduct, ProductID, ProductName, Category, UnitPrice)

Schema diagram?

The relational model

EXERCISES: WRITE RELATIONAL EXPRESSIONS / LOGICAL TREES

- Revenue is Qty*Price
- 1. Find the revenue of every invoice line
- 2. Find the invoice lines with revenue > 5000
- 3. Find the FkProduct's sold in at least one invoice line
- 4. Find the total revenue by FkProduct
- 5. Find the total revenue by FkProduct for invoice lines with Price > 2000
- 6. Find the total revenue by FkProduct with at least 10 pieces of total quantity sold

EXERCISES: WRITE RELATIONAL EXPRESSIONS / LOGICAL TREES

- Revenue is Qty*Price
- 1. Find the total revenue by product category
- Find the total revenue by customer nation for sales of product category 'Cat01'
- 3. Sort the customer names by total revenue descending
- 4. Find the total revenue of sales to customers from Finland of products from category 'Cat01'
- 5. Find customers with no sales