MULTIDIMENSIONAL MODEL

- Today, we introduce a logical model for the analysis of aggregated data:
 - Multidimensional model

MULTIDIMENSIONAL MODEL (CUBE)

The multidimensional model is useful to understand interactive data analysis, and how to improve the execution performance.

Multidimensional Model (Cube)

2-D CUBE: A matrix

Hypothesis: one measure and aggregations by sum.

	StoreId		
Productid	S1	S2	S 3
P1	300	500	50
P2	30	50	400

Sales

Storeld	ProductId	DateId	Qty
S1	P1	D1	300
S2	P1	D1	500
S3	P1	D1	50
S1	P2	D1	30
S2	P2	D1	50
S3	P2	D1	400
S2	P1	D2	200
S3	P1	D2	600
S1	P2	D2	900
S2	P2	D2	800
S3	P2	D2	70

Fact Table

3-D Cube

CUBE OPERATOR: SLICE

Sales **SLICE FOR** DateId = 'D1';

CUBE OPERATOR: DICE

Sales **DICE FOR** DateId = 'D1' StoreId **IN** ('S1', 'S2');

CUBE OPERATOR: PIVOT

PIVOT (Sales **SLICE FOR** DateId = 'D1');

Rotate: reorient the cube, visualization, 3D to series of 2D planes

CUBE OPERATORS: ROLL-UP and DRILL-DOWN

Roll-up aggregates data by dimension reduction or by going up in attribute hierarchy (Drill-down is the reverse of roll-up)

SALES ROLL-UP ON DateId (total Qty by ProductId and by StoreId)

Multidimensional Model (Cube)

CUBE OPERATORS: ROLL-UP and DRILL-DOWN

CUBE OPERATORS: DRILL THROUGH

Drill-through produces the facts that satisfy a cell coordinate

Sales

Storeld	ProductId	DateId	Qty
S1	P1	D1	300
S2	P1	D1	500
S3	P1	D1	50
S1	P2	D1	30
S2	P2	D1	50
S3	P2	D1	400
S2	P1	D2	200
S3	P1	D2	600
S1	P2	D2	900
S2	P2	D2	800
S3	P2	D2	70

Storeld	Productid	DateId	Qty
S1	P2	D1	30
S2	P2	D1	50
S3	P2	D1	400
S1	P2	D2	900
S2	P2	D2	800
S3	P2	D2	70

CUBE NAVIGATION BY DIFFERENT USERS

Product managers look at sales of some products in any period and in any market Finance manager look at sales of a period compared to the previous period for any product and any market

Branch manager look at sales of his/her stores for any product and any period

Demo

More at the Lab of Data Science!

- HerbalTeas -> Pivot Table
- DW -> Power Pivot or SSAS -> Pivot Table
- Pivot Tables & Charts
 - for multidimensional analysis

Multidimensional Model (Cube)

Sales(StoreId, ProductId, DateId)

is the cube with dimensions StoreId, ProdottoId, DataId, and measure M

A cube operation is denoted by substituting a dimension with a value

TEXTUAL NOTATION FOR CUBE OPERATORS (cont)

Sales(StoreId, ProductId, 'D1') slice

Sales('S1', ProductId, 'D1') dice

Sales('S1', 'P1', 'D1')

dice

TEXTUAL NOTATION FOR CUBE OPERATORS (cont.)

Each dimension domain is extended with the value "*", that means summarize data (sum) by all the dimension values.

Sales(StoreId, ProductId, *)

Sales by roll-up on DateId with sum(M)

CUBE OPERATORS: EXAMPLES

Sales(StoreId, ProductId, DateId) =

Sales(StoreId, ProductId, *) =

Sales(StoreId, *, *) =

Sales(*, *, *) =

CUBE OPERATORS: EXAMPLES

• What is

A data cube is extended with the value '*' for each dimensions, and in the corresponding cells is stored the **sum** of the **measure**.

EXTENDED CROSS TABULATION

Sales

Storeld	Productid	Qty
S1	P1	300
S2	P1	500
S 3	P1	50
S1	P2	30
S2	P2	50
S 3	P2	400

CROSS TABULATION

	Storeld		
Productid	S1	S2	S3
P1 P2	300 30	500 50	50 400

EXTENDED CROSS TABULATION

	Storeld			
Productid	S 1	S2	S3	Total
P1	300	500	50	850
P2	30	50	400	480
Total	330	550	450	1330

Cuboid = a cube on a subset of dimensions On the set of cuboids is defined the following partial order relation (lattice):

C1 < C2 if C1 dimensions are included in C2 dimensions.

HOW MANY CUBOIDS? HOW MANY CELLS?

- $D = \{d_1, ..., d_N\}$ dimensions (degenerate or flat)
 - 2^N cuboids
- Let $#d_i$ = number of values for dimension d_i

=

• How many cells in total?

$$\sum_{C \subseteq D} \prod_{d \in C} \#d$$
$$\prod_{i=1..N} (\#d_i + 1)$$

CUBOIDS MATERIALIZATION

Multidimensional Model (Cube)

AGGREGATION FUNCTIONS TYPES

$$V = V_1 \cup V_2 \qquad \qquad V_1 \cap V_2 = \emptyset$$

Distributive

E.g., sum(), min(), max(), count() sum(V) = sum(V₁) + sum(V₂) count(V) = count(V₁) + count(V₂)

sum({v}) = v
count({v}) = 1

Algebraic

E.g.,
$$avg()$$
, $var()$, $standard_deviation()$
 $avg(V) = sum(V)/count(V)$
 $var(V) = sum(V^2) - sum(V)^2 / count(V)$
 $sum(\{v\}^2) = v^*v$
 $count(V)-1$

Holistic

E.g., median(), mode(), rank().

CUBOIDS MATERIALIZATION

If the materialization is partial, which cuboids do we select?