
Analytic SQL, A. Albano
1

MODERATELY DIFFICULT REPORTS
WITH COMPARISON ACROSS AGGREGATION LEVELS

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Analytic SQL, A. Albano

Intuition: OVER clause with PARTITION BY

2

Analytic SQL, A. Albano

Intuition: OVER clause without PARTITION BY

3

Analytic SQL, A. Albano

MODERATELY DIFFICULT REPORTS
WITH COMPARISON ACROSS AGGREGATION LEVELS

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

WITH temp AS

SELECT Brand, Product, SUM(Revenue) AS TotRevenue,

FROM Sales WHERE Year(Date)=2008 and Month(Date)=1

GROUP BY Brand, Product

SELECT Brand, Product, TotRevenue,

SUM(TotRevenue) OVER(PARTITION BY Brand) As TotBrandRevenue,

SUM(TotRevenue) OVER() As TotRevenue

FROM temp

ORDER BY Brand, Product

Analytic SQL, A. Albano
5

ANALYTIC SQL

Syntax

Analytic SQL, A. Albano
6

ANALYTIC SQL

Syntax

Analytic SQL, A. Albano
7

ANALYTIC SQL

SemanticsSyntax

Analytic SQL, A. Albano

MODERATELY DIFFICULT REPORTS
WITH COMPARISON ACROSS AGGREGATION LEVELS

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

SELECT Brand, Product, SUM(Revenue) AS TotRevenue,

SUM(SUM(Revenue)) OVER(PARTITION BY Brand) As TotBrandRevenue,

SUM(SUM(Revenue)) OVER() As TotRevenue

FROM Sales

WHERE Year(Date)=2008 and Month(Date)=1

GROUP BY Brand, Product

ORDER BY Brand, Product

Analytic SQL, A. Albano
9

VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL:
RANK

Which are the best 5 products sold in Toscana?

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Analytic SQL, A. Albano
10

RANK

SELECT Customer, Product, SUM(Revenue) AS TotalRev,

FROM Sales WHERE Customer IN (‘C1’, ‘C2’)

GROUP BY Customer, Product ORDER BY TotalRev DESC;

Rank

7

6

5

4

3

2

1

Customer Product TotalRev

C1 P1 1100

C1 P3 1050

C2 P1 1000

C2 P2 900

C2 P4 800

C1 P2 250

C2 P3 200

RANK () OVER (ORDER BY SUM(Revenue)) AS Rank

Analytic SQL, A. Albano

Customer Product TotalRev

C1 P1 1100

C1 P3 1050

C1 P2 250

C2 P1 1000

C2 P2 900

C2 P4 800

C2 P3 200

11

RANK WITH PARTITIONS

SELECT Customer, Product, SUM(Revenue) AS TotalRevenue,

FROM Sales WHERE Customer IN (‘C1’, ‘C2’)

GROUP BY Customer, Product;

RANK () OVER (PARTITION BY Customer

 ORDER BY SUM(Revenue) DESC) AS Rank

Rank

1

2

3

1

2

3

4

Analytic SQL, A. Albano

RANK vs DENSE_RANK vs ROW_NUMBER

• Consider the values in the ascending order
• (10; 20; 20; 30; 30; 40)

• RANK() of a value is 1 + the number of values that strictly precedes it
• ranks (1; 2; 2; 4; 4; 6)

• DENSE_RANK() of a value is 1 + the number of distinct values that precedes it
• dense ranks (1; 2; 2; 3; 3; 4)

• PERCENT_RANK() is (RANK() – 1) / (TotalRows – 1)
• percent ranks (0; 0.2; 0.2; 0.6; 0.6; 1)

• ROW_NUMBER() is the row number
• row numbers (1; 2; 3; 4; 5; 6)

• CUME_DIST() of a value is the number of values lower or equal than it / TotalRows
• cumulative distribution (0.16; 0.5; 0.5; 0.83; 0.83; 1)

• NTILE(3) is the tertile of the value (3 is a parameter, can be any integer)
• tertiles (1; 1; 2; 2; 3; 3)

13

Analytic SQL, A. Albano

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

We want to partition the customers into four groups:

– Top5%, with 5% of customers with the highest amount of revenues.

– Next15%, with 15% of other customers with the highest amount of revenues.

– Middle30%, with 30% of other customers with the highest amount of revenues.

– Bottom50%, with 50 % of the customers with the lowest amount of revenues.

For each customer group we want to know their number, and the percentage

of the sum of their revenues compared to total revenue of all sales.

14

VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL:
EXERCISE AT HOME!

Group Number of
customers

Percent of total
revenue

Top5% 1 20

Next15% 3 50

Middle30% 6 20

Bottom50% 10 10

Analytic SQL, A. Albano

OTHER ANALYTIC FUNCTIONS

• COUNT(), SUM(), AVG(), MIN(), MAX() … and all standard aggregates

Sales(Brand, Product, Revenue)

SELECT Brand, Product,SUM(Revenue) AS prodRevenue,
100 * SUM(Revenue) / SUM(SUM(Revenue)) OVER(PARTITION BY Brand) AS PctOverBrand,
100 * SUM(Revenue) / SUM(SUM(Revenue)) OVER() AS PctOverTot

FROM sales
GROUP BY Brand, Product

SELECT Brand, Product,SUM(Revenue) AS prodRevenue,
100 * RATIO_TO_REPORT(SUM(Revenue)) OVER(PARTITION BY Brand) AS PctOverBrand,
100 * RATIO_TO_REPORT(SUM(Revenue)) OVER() AS PctOverTot

FROM sales
GROUP BY Brand, Product

16

Brand Product prodRevenue PctOverBrand PctOverTot

B1 P1 40 40 20

B1 P2 60 60 30

B2 P3 20 20 10

B2 P4 80 80 40

Analytic SQL, A. Albano
17

EXERCISE AT HOME: MODERATELY DIFFICULT REPORTS
WITH COMPARISON ACROSS AGGREGATION LEVELS

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Analytic SQL, A. Albano

OTHER ANALYTIC FUNCTIONS

• LAG(attribute, offset=1, default=NULL) and LEAD(attribute, offset=1, default =NULL)

• The value of attribute in offset rows before (LAG) or after (LEAD)

Store Year TotalRev

S1 2015 1100

S1 2014 1000

S1 2013 200

S2 2015 1000

S2 2014 900

S2 2013 800

S2 2012 200

PrevRev

1000

200

0

900

800

200

0

WITH temp AS (

 SELECT Store, Year, SUM(Sales) as TotalRev

 FROM Sales

 GROUP BY Store, Year)

SELECT Store, Year, TotalRev,

 LEAD(TotalRev, 1, 0)

 OVER(PARTITION BY Store

 ORDER BY Year DESC) AS PrevRev

FROM temp
ORDER BY Store, Year

Analytic SQL, A. Albano
19

MODERATELY DIFFICULT REPORTS
WITH COMPARISON BETWEEN COLUMNS (VARIANCE REPORT)

Delta = 100 x (Revenue2009 - Revenue2008)/Revenue2009

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

A product may have been sold in one year, but not in the other !

Analytic SQL, A. Albano
21

FULL [OUTER] JOIN

SELECT *
FROM R FULL JOIN S USING (A)
-- syntax not available in SQL Server

A B C

1 a x

2 b

3 c y

5 z

SELECT *
FROM R NATURAL FULL JOIN S

A B

1 a

2 b

3 c

R

A C

1 x

3 y

5 z

S

SELECT *
FROM R FULL JOIN S ON R.A = S.A

Analytic SQL, A. Albano
24

SOLUTION WITH FULL [OUTER] JOIN

Analytic SQL, A. Albano
25

SOLUTION USING LAG-LEAD (and NO JOIN)

Exercise at Home!

Analytic SQL, A. Albano

Foodmart datawarehouse DEMO

• RDBMS: Microsoft SQL Server

• SQL Server: lds.di.unipi.it

• Login: dsd Pwd: pisa

• GUI:

• SQL Server Management Studio

• Win only

• Azure Data Studio

• Win, Linux, Mac OS

26

Must connect from
.unipi.it (use VPN
if your are outside)

	Slide 1: MODERATELY DIFFICULT REPORTS WITH COMPARISON ACROSS AGGREGATION LEVELS
	Slide 2: Intuition: OVER clause with PARTITION BY
	Slide 3: Intuition: OVER clause without PARTITION BY
	Slide 4: MODERATELY DIFFICULT REPORTS WITH COMPARISON ACROSS AGGREGATION LEVELS
	Slide 5: ANALYTIC SQL
	Slide 6: ANALYTIC SQL
	Slide 7: ANALYTIC SQL
	Slide 8: MODERATELY DIFFICULT REPORTS WITH COMPARISON ACROSS AGGREGATION LEVELS
	Slide 9: VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL: RANK
	Slide 10: RANK
	Slide 11: RANK WITH PARTITIONS
	Slide 13: RANK vs DENSE_RANK vs ROW_NUMBER
	Slide 14: VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL: EXERCISE AT HOME!
	Slide 16: OTHER ANALYTIC FUNCTIONS
	Slide 17: EXERCISE AT HOME: MODERATELY DIFFICULT REPORTS WITH COMPARISON ACROSS AGGREGATION LEVELS
	Slide 18: OTHER ANALYTIC FUNCTIONS
	Slide 19
	Slide 21: FULL [OUTER] JOIN
	Slide 24: SOLUTION WITH FULL [OUTER] JOIN
	Slide 25: SOLUTION USING LAG-LEAD (and NO JOIN)
	Slide 26: Foodmart datawarehouse DEMO

