EXERCISE AT HOME

Let us consider the following lattice of possible candidate views to materialize. The numbers associated with the nodes represent the view size, measured in terms of the number of tuples in the view.

- (a) (1 point) The value X for N_2 is unknown. What is the domain of admissible values for X?
- (b) (5 points) Select 2 views to materialize, different from N_1 , with the greedy algorithm HRU. Determine the various possible results of HRU on the basis of the unknown value X for N_2 .

• max{ descendants of N_2 } = 30 $\leq X \leq 100$ = min{ ascendants of N_2 }

View	First Choice	
N ₂	(100-X)•4	
N ₃	(100-50)•4 = 200	
N ₄	(100-20)•2 = 160	
N ₅	(100-30)•2 = 140	
N ₆	(100-10) = 90	
N ₇	(100-5) = 95	

• (100-X)•4 > 200 iff X < 50

• max{ descendents of N_2 } = 30 $\leq X \leq 100$ = min{ ascendents of N_2 }

View	First Choice	Second choice 30≤X<50	
N ₂	(100-X)•4	-	
N ₃	(100-50)•4 = 200	(100-50)•2 + (X-50)•2 = 100	
N ₄	(100-20)•2 = 160	(X-20)•2 <u><</u> 60	
N ₅	(100-30)•2 = 140	(X-30)•2 <u>≤</u> 40	
N ₆	(100-10) = 90	(100-10) = 90	
N ₇	(100-5) = 95	(X-5) <u>≤</u> 45	

• (100-X)•4 > 200 iff X < 50

EXERCISE AT HOME

• max{ descendents of N_2 } = 30 $\leq X \leq 100$ = min{ ascendents of N_2 }

View	First Choice	Second choice 30≤X<50	Second choice 50≤X≤100		
N ₂	(100-X)•4	-	(100-X)•2+ (50-X)•2 ≤ 100		
N ₃	(100-50)•4 = 200	(100-50)•2 + (X-50)•2 = 100	-		
N ₄	(100-20)•2 = 160	(X-20)•2 <u><</u> 60	(100-20)+(50-20) = 110		
N_5	(100-30)•2 = 140	(X-30)•2 <u><</u> 40	(50-30)•2 = 40		
N ₆	(100-10) = 90	(100-10) = 90	(50-10) = 40		
N ₇	(100-5) = 95	(X-5) <u>≤</u> 45	(50-5) = 45		

• (100-X)•4 > 200 iff X < 50

RELATIONAL DBMS EXTENSIONS FOR DW

- SQL extensions
- Index and storage structures
- Star query physical plans
- Materialized views

NEXT LESSON

Optimization techniques for star queries with grouping and aggregations

TODAY: functional dependencies and their usage in query optimization

Functional dependencies

Given a relation schema R(T) and X, $Y \subseteq T$, a functional dependency (FD) is a constraint on R of the form $X \rightarrow Y$, i.e. X functionally determines Y or Y is determined by X, if

 \forall r valid instance of R. \forall t1, t2 \in r. if t1[X] = t2[X] then t1[Y] = t2[Y]

Convention: ..., X, Y, Z represent sets of attributes; A, B, C, ... represent single attributes; a set of attributes {A, B, C} is represented just as ABC.

FUNCTIONAL DEPENDENCIES: EXAMPLE

StudentsExams(StudCode, Name, City, Region, BirthYear, Subject, Grade)

StudCode	Name	City	Region	BirthYear	Subject	Grade
1234567	N1	C1	R1	1995	DB	30
1234567	N1	C1	R1	1995	SE	28
1234568	N2	C2	R2	1994	DB	30
1234568	N2	C2	R2	1994	SE	26

StudCode \rightarrow Name City Region BirthYear ?

City \rightarrow Region ? Subject \rightarrow Grade ? NO

StudCode Subject \rightarrow Grade? Subject \rightarrow Subject ? trivial

 $X \rightarrow \{\}$? trivial $\{\} \rightarrow$ University ? YES, if University is constant

Notation:

- R <T, F> is a relational schema with attributes T and a set of functional dependencies F.
 Example: F = { X->Y, Y->Z }
- A FD \in F is a constraint on relational instances r of R <T, F>
 - r is a valid instance if \forall t1, t2 \in r. if t1[X] = t2[X] then t1[Y] = t2[Y]

Usage: defined by the designer, enforced by the DBMS. In practice, only the functional dependency $K \rightarrow T$ are enforced, when K is a key.

REASONING ABOUT FDs: LOGICAL IMPLICATION

Notation:

- R <T, F> is a relational schema with attributes T and a set of functional dependencies F.
 Example: F = { X->Y, Y->Z }
- A FD \in F is a constraint on relational instances

Given a set F of FDs, other FDs will generally be 'implied' by this set in the following sense:

Definition Given a schema R <T, F>, we say that F *implies* $X \rightarrow Y$, if every instance r of R that satisfies F also satisfies $X \rightarrow Y$.

Example: { X->Y, Y->Z } implies X -> Z ?

INFERENCE RULES

To test if a FD implied by a set F, a set of inference rules can be used with the property of being **sound** and **complete** (F implies FD **iff** F |- FD)

Armstrong axioms:

•If
$$Y \subseteq X$$
, then $F \mid -X \rightarrow Y$ (reflexivity R)

·If F |- X \rightarrow Y and Z \subseteq T, then F |- XZ \rightarrow YZ (augmentation A)

·If F |- X \rightarrow Y and F |- Y \rightarrow Z, then F |- X \rightarrow Z (transitivity T)

Exercises:

- 1. $\{X \rightarrow Y, X \rightarrow Z\} \mid -X \rightarrow YZ$ (union U)
- 2. if $Z \subseteq Y$ then: X->Y |-X->Z (decomposition **D**)
- 3. $F \mid -X \rightarrow A_1, ..., A_n$ iff $F \mid -X \rightarrow A_1$ and ... $F \mid -X \rightarrow A_n$

CLOSURE OF A SET OF FDs

The FDs implied by F (the closure of F) are defined as:

$$\mathsf{F}^{+} = \{ \mathsf{X} \to \mathsf{Y} \mid \mathsf{F} \mid -\mathsf{X} \to \mathsf{Y} \}$$

Implication problem: to test whether a FD $X \rightarrow Y \in F^+$ (without computing the whole closure of F)

Exercises:

3. $F \mid -X \rightarrow A_1, ..., A_n$ iff $F \mid -X \rightarrow A_1$ and ... $F \mid -X \rightarrow A_n$

CLOSURE OF A SET OF ATTRIBUTES

Definition Given a scheme R <T, F>, and $X \subseteq T$, the closure of X is $X^+ = \{ A \in T \mid F \mid -X \rightarrow A \}$

A procedure to solve the implication problem without computing the whole closure of F follows from the following result.

Theorem F $|-X \rightarrow Y \text{ iff } Y \subseteq X^{+}$

Proof. We proved it as exercise (3)

SLOW CLOSURE

A simple algorithm to compute X^+ is the following

faster algorithm exist

```
Algorithm SLOW CLOSURE
input R<T, F>, X \subseteq T
output X<sup>+</sup>
begin
    X^+ = X
    while (changes to X<sup>+</sup>) do
      for each W \to V in F with W \subseteq X^+ and V \notin X^+
          do X<sup>+</sup> = X<sup>+</sup> ∪ V
end
```


$$F = \{DB \to E, B \to C, A \to B\}.$$
 Is $AD \to E$ in F^+ ?

$$X^+ = AD$$

- $X^+ = ADB$
- X⁺ = ADBE
- X⁺ = ADBEC

ASSUMPTIONS

- The tables do not have null values, and have primary keys:
 - A key constraint uniquely identifies each record in a table.
 - Tables are then sets of tuples
- Table in FROM clause have no attribute with the same name
- Queries are a single SELECT with possibly GROUP BY and HAVING but without subselect and ORDER BY clauses.

FDs AND (SUPER)KEYS

Recall our assumption: tables are sets of tuples

Definition Given a scheme R <T, F>, we say that $W \subseteq T$ is a key of R if $W \rightarrow T \in F^+$ (W is a superkey) and $\forall V \subset W. V \rightarrow T \notin F^+$ (if $V \subset W, V$ is not a superkey)

If X \rightarrow Y holds in R, is this still the case in R x S? Hypothesis. If \forall t1, t2 \in R. if t1[X] = t2[X] then t1[Y] = t2[Y] Conclusion. \forall w1, w2 \in R x S. if w1[X] = w2[X] then w1[Y] = w2[Y] w1 = t1 \circ s1 \Rightarrow w1[X] = t1[X]

If X is a key for R and Y a key for S, then is XY a key for $R \times S$?

• XY is a superkey:

 $X \rightarrow R1, ..., Rn, Y \rightarrow S1, ..., Sm |- XY \rightarrow R1, ..., Rn, S1, ..., Sm$ iff {R1, ..., Rn, S1, ..., Sm} \subseteq {X,Y}⁺ {X,Y}⁺ = {X,Y,R1,...,Rn,S1,...,Sm}

• no subset of XY is a superkey: exercise at home

EXERCISE: FD's lift over selections (and then over joins)

If X \rightarrow Y holds in R, is this still the case in $\sigma_c(R)$? Hypothesis. If \forall t1, t2 \in R. if t1[X] = t2[X] then t1[Y] = t2[Y] Conclusion. \forall w1, w2 \in $\sigma_c(R)$. if w1[X] = w2[X] then w1[Y] = w2[Y] w1 = t1 for some t1 \in R \Rightarrow w1[X] = t1[X]

If X is a key for R, then is X a (super)key for $\sigma_c(R)$?

• X is a superkey:

X -> R1, ..., Rn |- X -> R1, ..., Rn

no subset of X is a superkey: FALSE

for $R(\underline{A}, \underline{B})$, AB is a key

for $\sigma_{B=1}(R)$, A is a key

Functional dependencies

ASSUMPTIONS

- The tables do not have null values, and have primary keys:
 - A key constraint uniquely identifies each record in a table.
 - Tables are then sets of tuples
- Table in FROM clause have no attribute with the same name
- Queries are a single SELECT with possibly GROUP BY and HAVING but without subselect and ORDER BY clauses.
- Since superkeys are lifted after join and restriction, then $\sigma_c(R \bowtie S)$ is a set of tuples

EXAMPLE

GENERALIZATION OF THE EXAMPLE

SELECT DISTINCT X FROM R, S WHERE C=D AND ϕ

When **DISTINCT** is useless?

X is a (super)key in $\sigma_{\phi}(\mathsf{R} \bowtie \mathsf{S})$

e.g., if X determines the keys of R and S

DERIVING FUNCTIONAL DEPENDENCIES IN SQL RESULTS

Which functional dependencies hold in the result of a query SELECT * FROM-WHERE when all the tables in FROM have a key?

- 1. Let F the initial set of FDs where their determinants are the keys of every table used in the query.
- 2. Let C the WHERE condition. If a conjunct of C is a predicate Ai = c, then F is extended with the functional dependency $\{\} \rightarrow Ai$.
- 3. If a conjunct of C is a predicate Aj = Ak, e.g. a join condition, F is extended with the functional dependencies $Aj \rightarrow Ak$ and $Ak \rightarrow Aj$.

An algorithm to compute the closure of an attribute set X in $\sigma_{\phi}(R \bowtie S)$, which works directly on SQL without explicitly using functional dependencies.

- 1. Let $X^+ = X$
- 2. Add to X^+ all attributes Ai such that Ai = c is a conjunct of the selection.
- 3. Repeat until X⁺ is changed
 - a) Add to X^+ all attributes Aj such that predicate Aj = Ak is a conjunct of the selection, and $Ak \in X^+$.
 - b) Add to X+ all attributes of a table if X+ contains a key for that table.

 $R(\underline{A}, B, C) \quad S(\underline{D}, E)$

SELECT DISTINCT A, E FROM R, S WHERE C=D AND B=5