
GroupBy Optimization, A. Albano

EXERCISE AT HOME

1

GroupBy Optimization, A. Albano

EXERCISE AT HOME

• max{ descendants of N2 } = 30 ≤ X ≤ 100 = min{ ascendants of N2 }

• (100-X)•4 > 200 iff X < 50

2

View First Choice

N2 (100-X)•4

N3 (100-50)•4 = 200

N4 (100-20)•2 = 160

N5 (100-30)•2 = 140

N6 (100-10) = 90

N7 (100-5) = 95

GroupBy Optimization, A. Albano

EXERCISE AT HOME

• max{ descendents of N2 } = 30 ≤ X ≤ 100 = min{ ascendents of N2 }

• (100-X)•4 > 200 iff X < 50

3

View First Choice Second choice 30≤X<50

N2 (100-X)•4 -

N3 (100-50)•4 = 200 (100-50)•2 + (X-50)•2 = 100

N4 (100-20)•2 = 160 (X-20)•2 ≤ 60

N5 (100-30)•2 = 140 (X-30)•2 ≤ 40

N6 (100-10) = 90 (100-10) = 90

N7 (100-5) = 95 (X-5) ≤ 45

M = {N1, N2, N3}

GroupBy Optimization, A. Albano

EXERCISE AT HOME

• max{ descendents of N2 } = 30 ≤ X ≤ 100 = min{ ascendents of N2 }

• (100-X)•4 > 200 iff X < 50

4

View First Choice Second choice 30≤X<50 Second choice 50≤X≤100

N2 (100-X)•4 - (100-X)•2+ (50-X)•2 ≤ 100

N3 (100-50)•4 = 200 (100-50)•2 + (X-50)•2 = 100 -

N4 (100-20)•2 = 160 (X-20)•2 ≤ 60 (100-20)+(50-20) = 110

N5 (100-30)•2 = 140 (X-30)•2 ≤ 40 (50-30)•2 = 40

N6 (100-10) = 90 (100-10) = 90 (50-10) = 40

N7 (100-5) = 95 (X-5) ≤ 45 (50-5) = 45

M = {N1, N2, N3} M = {N1, N3, N4}

GroupBy Optimization, A. Albano
5

RELATIONAL DBMS EXTENSIONS FOR DW

• SQL extensions

• Materialized views

• Optimization techniques for star queries with grouping and aggregations

• Index and storage structures

• Star query physical plans

NEXT LESSON

TODAY: functional dependencies and their usage in query optimization

Functional dependencies

GroupBy Optimization, A. Albano
8

FUNCTIONAL DEPENDENCIES

Functional dependencies

Convention: ..., X, Y, Z represent sets of attributes; A, B, C, ... represent

single attributes; a set of attributes {A, B, C} is represented just as ABC.

Given a relation schema R(T) and X, Y T, a functional dependency (FD) is a

constraint on R of the form X → Y, i.e. X functionally determines Y or Y is

determined by X, if

 r valid instance of R.

 t1, t2 r. if t1[X] = t2[X] then t1[Y] = t2[Y]

Functional dependencies

GroupBy Optimization, A. Albano
9

FUNCTIONAL DEPENDENCIES: EXAMPLE

StudCode Name City Region BirthYear Subject Grade

1234567 N1 C1 R1 1995 DB 30

1234567 N1 C1 R1 1995 SE 28

1234568 N2 C2 R2 1994 DB 30

1234568 N2 C2 R2 1994 SE 26

StudCode → Name City Region BirthYear ?

Subject → Grade ?City → Region ?

StudCode Subject → Grade ?

NO

StudentsExams(StudCode, Name, City, Region, BirthYear, Subject, Grade)

Subject → Subject ? trivial

trivialX → { } ? { } → University ? YES, if University
is constant

Functional dependencies

GroupBy Optimization, A. Albano
11

REASONING ABOUT FDs: LOGICAL IMPLICATION

Notation:

• R <T, F> is a relational schema with attributes T and a set of functional

dependencies F. Example: F = { X->Y, Y->Z }

• A FD F is a constraint on relational instances r of R <T, F>

• r is a valid instance if t1, t2 r. if t1[X] = t2[X] then t1[Y] = t2[Y]

Usage: defined by the designer, enforced by the DBMS. In practice, only

the functional dependency K → T are enforced, when K is a key.

Functional dependencies

GroupBy Optimization, A. Albano
12

REASONING ABOUT FDs: LOGICAL IMPLICATION

Notation:

• R <T, F> is a relational schema with attributes T and a set of functional

dependencies F. Example: F = { X->Y, Y->Z }

• A FD F is a constraint on relational instances

Given a set F of FDs, other FDs will generally be ‘implied’ by this set

in the following sense:

Definition Given a schema R <T, F>, we say that F implies X → Y, if

every instance r of R that satisfies F also satisfies X → Y.

Example: { X->Y, Y->Z } implies X –> Z ?

Functional dependencies

GroupBy Optimization, A. Albano
13

INFERENCE RULES

To test if a FD implied by a set F, a set of inference rules can be used with

the property of being sound and complete (F implies FD iff F |- FD)

Armstrong axioms:

•If Y X, then F |- X → Y (reflexivity R)

•If F |- X → Y and Z T, then F |- XZ → YZ (augmentation A)

•If F |- X → Y and F |- Y → Z, then F |- X → Z (transitivity T)

Exercises:

1. { X->Y, X->Z } |- X –> YZ (union U)

2. if Z Y then: X->Y |- X -> Z (decomposition D)

3. F |- X -> A1, …, An iff F |- X -> A1 and … F |- X -> An

R <T, F>

Functional dependencies

GroupBy Optimization, A. Albano
14

CLOSURE OF A SET OF FDs

The FDs implied by F (the closure of F) are defined as:

F+ = { X → Y | F |- X → Y }

Implication problem: to test whether a FD X → Y F+ (without computing

the whole closure of F)

Exercises:

3. F |- X -> A1, …, An iff F |- X -> A1 and … F |- X -> An

Functional dependencies

GroupBy Optimization, A. Albano
15

CLOSURE OF A SET OF ATTRIBUTES

A procedure to solve the implication problem without computing the whole
closure of F follows from the following result.

 Theorem F |– X → Y iff Y X+

Proof. We proved it as exercise (3)

Definition Given a scheme R <T, F>, and X T, the closure of X is

X+ = { A T | F |– X → A }

Functional dependencies

GroupBy Optimization, A. Albano
16

SLOW CLOSURE

A simple algorithm to compute X+ is the following

▪ faster algorithm exist

Algorithm SLOW CLOSURE

input R<T, F>, X T

output X+

begin

 X+ = X

 while (changes to X+) do

 for each W → V in F with W X+ and V X+

 do X+ = X+ V

end

Functional dependencies

GroupBy Optimization, A. Albano
17

EXAMPLE

F = {DB → E, B → C, A → B}. Is AD → E in F+ ?

X+ = AD

X+ = ADB

X+ = ADBE

X+ = ADBEC

Functional dependencies

GroupBy Optimization, A. Albano
18

ASSUMPTIONS

• The tables do not have null values, and have primary keys:

• A key constraint uniquely identifies each record in a table.

• Tables are then sets of tuples

• Table in FROM clause have no attribute with the same name

• Queries are a single SELECT with possibly GROUP BY and

HAVING but without subselect and ORDER BY clauses.

S

XF

A=B

R

Functional dependencies

GroupBy Optimization, A. Albano
19

FDs AND (SUPER)KEYS

Definition Given a scheme R <T, F>, we say that W T is a key of R if

 W → T F+ (W is a superkey) and

 V W. V → T F+ (if V W, V is not a superkey)

Recall our assumption: tables are sets of tuples

Functional dependencies

GroupBy Optimization, A. Albano

EXERCISE: FD’s lift over cartesian product

20

If X → Y holds in R, is this still the case in R x S ?

If X is a key for R and Y a key for S, then is XY a key for R x S ?

Hypothesis. If t1, t2 R. if t1[X] = t2[X] then t1[Y] = t2[Y]

Conclusion. w1, w2 R x S. if w1[X] = w2[X] then w1[Y] = w2[Y]

 w1 = t1 s1 w1[X] = t1[X]

• XY is a superkey:

X -> R1, …, Rn, Y -> S1, …, Sm |- XY -> R1, …, Rn, S1, …, Sm

iff {R1, …, Rn, S1, …, Sm} {X,Y}+

{X,Y}+ = {X,Y,R1,…,Rn,S1,…,Sm}

• no subset of XY is a superkey: exercise at home

Functional dependencies

GroupBy Optimization, A. Albano

EXERCISE: FD’s lift over selections (and then over joins)

21

If X → Y holds in R, is this still the case in C(R) ?

If X is a key for R, then is X a (super)key for C(R) ?

Hypothesis. If t1, t2 R. if t1[X] = t2[X] then t1[Y] = t2[Y]

Conclusion. w1, w2 C(R). if w1[X] = w2[X] then w1[Y] = w2[Y]

 w1 = t1 for some t1 R w1[X] = t1[X]

• X is a superkey:

X -> R1, …, Rn |- X -> R1, …, Rn

• no subset of X is a superkey: FALSE

for R(A, B), AB is a key

for B=1(R), A is a key

Functional dependencies

GroupBy Optimization, A. Albano
22

ASSUMPTIONS

• The tables do not have null values, and have primary keys:

• A key constraint uniquely identifies each record in a table.

• Tables are then sets of tuples

• Table in FROM clause have no attribute with the same name

• Queries are a single SELECT with possibly GROUP BY and

HAVING but without subselect and ORDER BY clauses.

• Since superkeys are lifted after join and restriction, then

C(R S) is a set of tuples

S

XF

C=D

R

Functional dependencies

GroupBy Optimization, A. Albano
23

EXAMPLE

R(A,B,C) S(D,E) F = { A->BC, D->E, … what else? … }

F = { A->BC, D->E, {}->B, C->D, D->C }

F |- AE-> AD ?

b
A,E

C=D

B=5

R

S

A {A,E}+ D {A,E}+ ?

Apply SLOW CLOSURE

F |- AE -> AD YES

Is needed ???

Since AD is a superkey after the join, AE is a superkey!

 is NOT needed

In general: if X -> Y
and Y is a super-key

then X is a super-key

Functional dependencies

GroupBy Optimization, A. Albano

GENERALIZATION OF THE EXAMPLE

24

b
X

R S

SELECT DISTINCT X
FROM R, S
WHERE C=D AND

When DISTINCT is useless ?

X is a (super)key in (R S)

e.g., if X determines the keys of R and S

C=D

Functional dependencies

GroupBy Optimization, A. Albano
26

DERIVING FUNCTIONAL DEPENDENCIES IN SQL RESULTS

Which functional dependencies hold in the result of a query

SELECT * FROM-WHERE when all the tables in FROM have a key ?

1. Let F the initial set of FDs where their determinants are the keys of
every table used in the query.

2. Let C the WHERE condition. If a conjunct of C is a predicate Ai = c,
then F is extended with the functional dependency { } → Ai.

3. If a conjunct of C is a predicate Aj = Ak, e.g. a join condition, F is
extended with the functional dependencies Aj → Ak and Ak → Aj.

Functional dependencies

GroupBy Optimization, A. Albano
27

DERIVING FUNCTIONAL DEPENDENCIES IN SQL RESULTS

SELECT DISTINCT A, E
FROM R, S
WHERE C=D AND B=5

An algorithm to compute the closure of an attribute set X in (R S) , which
works directly on SQL without explicitly using functional dependencies.

1. Let X+ = X

2. Add to X+ all attributes Ai such that Ai = c is a conjunct of the selection.

3. Repeat until X+ is changed

a) Add to X+ all attributes Aj such that predicate Aj = Ak is a conjunct
of the selection, and Ak X+.

b) Add to X+ all attributes of a table if X+ contains a key for that table.

{A, E}+ = {A, E, B, C, D}

R(A,B,C) S(D,E)

Functional dependencies

	Slide 1: EXERCISE AT HOME
	Slide 2: EXERCISE AT HOME
	Slide 3: EXERCISE AT HOME
	Slide 4: EXERCISE AT HOME
	Slide 5: RELATIONAL DBMS EXTENSIONS FOR DW
	Slide 8: FUNCTIONAL DEPENDENCIES
	Slide 9: FUNCTIONAL DEPENDENCIES: EXAMPLE
	Slide 11: REASONING ABOUT FDs: LOGICAL IMPLICATION
	Slide 12: REASONING ABOUT FDs: LOGICAL IMPLICATION
	Slide 13: INFERENCE RULES
	Slide 14: CLOSURE OF A SET OF FDs
	Slide 15: CLOSURE OF A SET OF ATTRIBUTES
	Slide 16: SLOW CLOSURE
	Slide 17: EXAMPLE
	Slide 18: ASSUMPTIONS
	Slide 19: FDs AND (SUPER)KEYS
	Slide 20: EXERCISE: FD’s lift over cartesian product
	Slide 21: EXERCISE: FD’s lift over selections (and then over joins)
	Slide 22: ASSUMPTIONS
	Slide 23: EXAMPLE
	Slide 24: GENERALIZATION OF THE EXAMPLE
	Slide 26: DERIVING FUNCTIONAL DEPENDENCIES IN SQL RESULTS
	Slide 27: DERIVING FUNCTIONAL DEPENDENCIES IN SQL RESULTS

