BUSINESS INTELLIGENCE LABORATORY

Association Rules

Computer Science Department, University of Pisa

Business Informatics Degree

Items, transactions, transaction db

- □ Let I = { a_1, \ldots, a_n } be a finite set
 - $\square a_i \in I$ is called an **item**
- □ A **itemset** I is a subset of I □ $| \subseteq I$
- □ A **transaction** t is an itemset with an identifier
 - **u** t = (i, I) with I \subseteq I also written t_i \subseteq I
- A transaction database is a finite set of transactions

$$\Box D = \{ t_i \mid i = 1 \dots d, t_i \subseteq I \}$$

- Transactional
 - A row for each transaction (id not necessary)
 - List of items in the transaction

milk, sugar, water

beer, diapers

. . .

Not available in Weka

🗆 Tabular

Two columns

transaction ID

item

tID	item	
1	milk	
1	sugar	
1	water	
2	beer	
•••	•••	

Filter available in Weka: <u>denormalize</u>

Use the GUI Chooser -> Tools -> Package Manager to install it

Binary

- A column for each item
- A row for each transaction (id not necessary)
- Cell value
 - true (false) if the item is (not) in the transaction

milk	sugar	•••	diapers
true	true		false
false	false		true
•••	•••	•••	•••

In Weka use '?' for false

Business Intelligence Lab

Relational

- Item are of the form att=value
 - **att** is an attribute, **value** is a value in its domain
- A row for each transaction (id not necessary)
- Cell value
 - value if the item att=value is in the transaction

income	status	•••	age
high	married		20-30
medium	single		40-50
•••	•••	•••	•••

Available in Weka

Support & Confidence

- \square Association rule $X \rightarrow Y$
 - **\square** X, Y itemsets and X \cap Y = \emptyset
- \square Classification rule $X \rightarrow \mathbb{C}$
 - □ X itemset, C class item, C ∉ X
 - Common in the relational format
- Support of an itemset
 - $\square supp(I) = |\{t \in D \mid I \subseteq t\}|$
 - relative support: supp(I)/|D|

Support & Confidence

8

4-fold contingency table

	Y	¬Y
X	a	b
$\neg \mathbf{X}$	С	d

 $\mathbf{X} \rightarrow \mathbf{Y}$

 $\Box \text{ supp}(X \rightarrow Y) = a = \text{supp}(X,Y)$

 \Box conf(X \rightarrow Y) = a/(a+b) = supp(X,Y)/supp(X)

 $\Box \text{ coverage}(X \rightarrow Y) = a+b = \text{supp}(X)$

□ lift(X → Y) = conf(X → Y)/conf(true → Y) = supp(X,Y)/(supp(X)*supp(Y))

Software for AR mining

🗆 Weka

Binary and relational format

🗆 Frida

<u>http://www.borgelt.net/frida.html</u>

Transactional format

SQL Server Analysis Services

Relational format

A lot of research and commercial systems

<u>http://fimi.cs.helsinki.fi</u>

<u>http://www.kdnuggets.com/software/associations.html</u> Business Intelligence Lab

Demo and practice

- Demo on the supermarket.arff dataset
- Practice on the credit-g.arff dataset
 - Objective:
 - Find conditions of past bad credit
 - Method
 - Find classification rules with class=bad
 - Rank them wrt which measure?