
LABORATORY OF DATA SCIENCE

Reminds on Data Mining

Data Science & Business Informatics Degree

BI Architecture

Figure 1. Typical business intelligence architecture.

Data Mining Techniques

3

- Classification/Regression
- Association Rule Discovery
- Clustering
- Sequential Pattern Discovery
- Deviation Detection
- Text Mining
- Web Mining
- Social Network Analysis

••

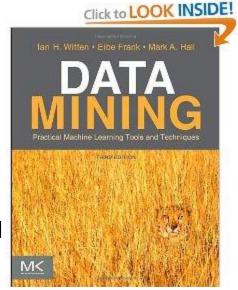
Tools for data mining

□ From **DBMS**

- SQL Server Analysis Services
- Oracle Data Miner
- IBM DB2 Intelligent Miner (discontinued)
- □ From Statistical analysis
 - IBM Modeler (formerly SPSS Clementine)
 - SAS Miner
- □ From Machine-Learning
 - Knime
 - Weka
- An updated list

<u>http://www.kdnug.gettsDagnac/esoftware/index.html</u>

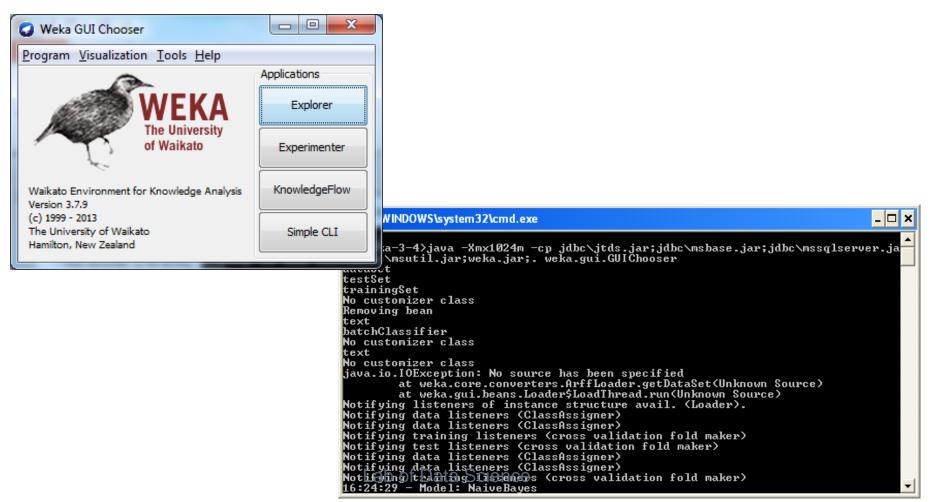
Standards


- XML representation of data mining models
 Predictive Modelling Markup Language: <u>PMML</u>
- API for accessing data mining services
 Microsoft <u>OLE DB for DM</u>
 Java JDM
- SQL Extensions for data mining
 - Standard SQL/MM Part 6 Data Mining
 - Oracle, DB2 & SQL Server have non-standard extensions
 - SSAS <u>DMX</u> query language and <u>Data Mining queries</u>

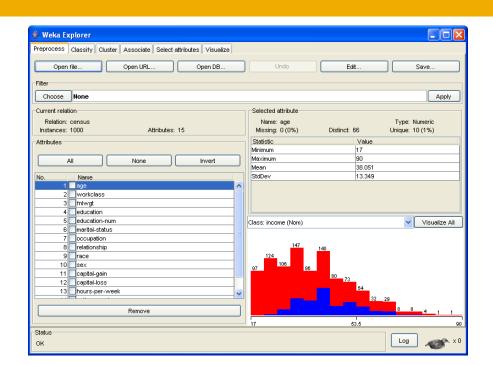
Lab of Data Science

Weka

- Suite for machine learning / data mining
- Developed in Java
 - Distributed with a GNU GPL licence
 - Since 2006 it is part of the BI Pentaho suite
- References
 - ^D "Data Mining" by Witten & Frank, 3rd ed., 2011
 - On line docs <u>http://www.cs.waikato.ac.nz/ml/weka/index.html</u>
- Features / limits:
 - A complete set of tools for pre-processing, classification, clustering, association rules, visualization
 - Extensible (documented APIs)
 - Not very efficient / scalable (data are maintained in main memory)

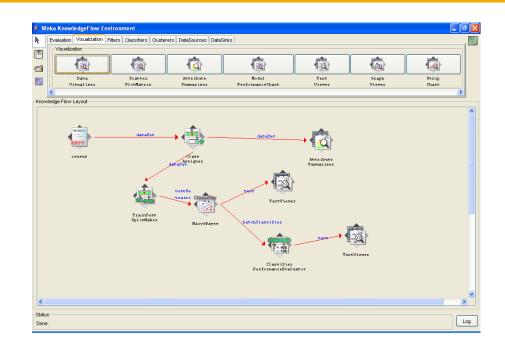


Weka versions


- Download: <u>http://www.cs.waikato.ac.nz/~ml/weka</u>
- May 2015, Weka 3.7.12 (developer version)
- Patch distribuited by the teacher
 - To be copied in the Weka installation directory
 - It includes setting for:
 - Larger memory occupation (Java default is 80Mb)
 - Data types for SQL Server RDBMS
 - Driver JDBC
- Weka Light
 - Minimal version 3.7.12, patch already included

Weka interfaces

GUI chooser and console with errors/warnings


Weka interfaces: Explorer

Explorer: GUI with distinct panels for preprocessing, classification, clustering, ...


Lab of Data Science

Weka interfaces: KnowledgeFlow

KnowledgeFlow: GUI with data flow

Weka interfaces: Simple CLI

Simple CLI (Call Level Interface): command line interface

Lab of Data Science

Weka interfaces: Experimenter

🖆 Weka Experiment Environment				
Setup Run Analyse				
Experiment Configuration Mode:	 Simple 		🚫 Advanced	
Open	Save		New	
Results Destination				
ARFF file Filename: G:WVeka-3-4\data\r.ar	Ť			Browse
Experiment Type	Iteration	Sontrol		
Train/Test Percentage Split (data randomized)	V Number	of repetitions: 2		
Train percentage: 6.0	 Data 	a sets first		
Classification Cassification	O Algo	orithms first		
Datasets	Algorithm	IS		
Add new Dele	te selected Ac	id new E	dit selected	Delete selected
Use relative paths	ZeroR			
G:WVeka-3-4\data\c.arff				
		Load options	Save	options
<u></u>		Louis options		0,000,000
	Notes			

Experimenter: automation of large experiments by varying datasets, algorithms, parameters, ..

Details

Weka manual

Installation directory, or at the weka website

WEKA Manual for Version 3-7-12

Remco R. Bouckaert Eibe Frank Mark Hall Richard Kirkby Peter Reutemann Alex Seewald David Scuse

December 16, 2014

Lab of Data Science

Filters

Conversions

MakeIndicator, NominalToBinary, NumericToBinary, NumericToNominal

Selections

RemovePercentage, RemoveRange, RemoveWithValues, SubSetByExpression

Sampling

Resample, SpreadSubSample, StratifiedRemoveFolds

Transformation

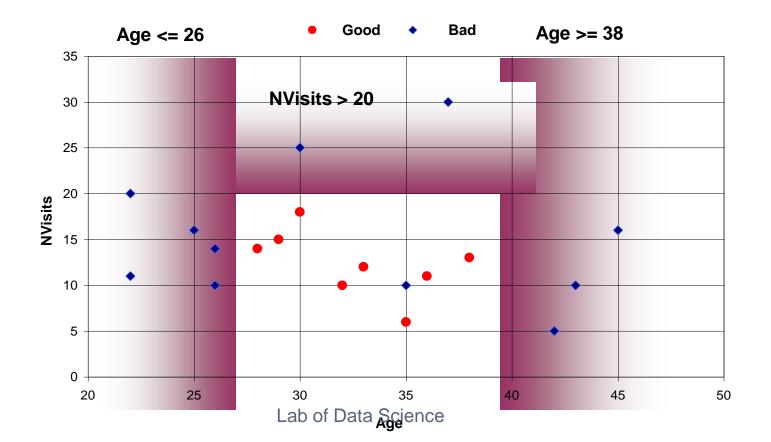
Add, AddExpression, AddNoise, AddValues

- Normalization
 Center, Normalize, Standardize
- Discretization
 Discretize
- Cleaning

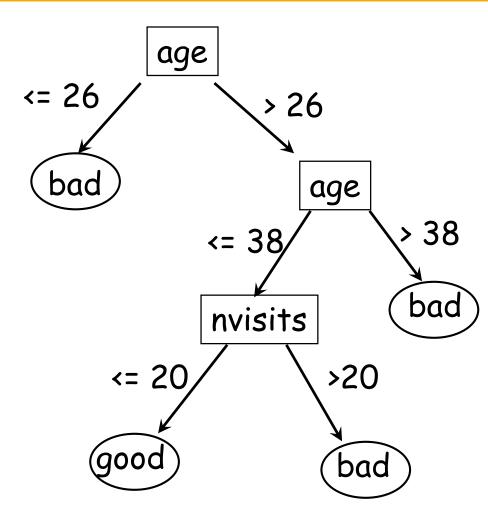
NumericCleaner, Remove, RemoveByType, RemoveUseless

Missing Values

ReplaceMissingValues


16 Reminds on classification

Lab of Data Science


Who are my best customers?

17

- □ ... given their age and frequency of visit !
- \Box Good customers = top buyers, buy more than X, ...

... described with a decision tree!

Lab of Data Science

Classification: input

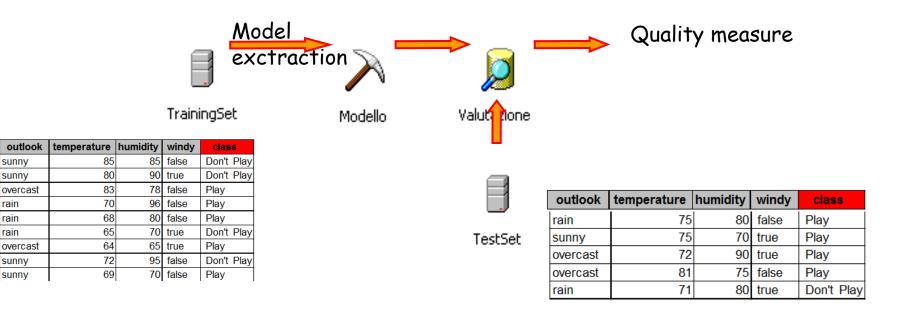
19

A set of examples (or instances or cases) which described a concept or event (class) given predictive attributes (or features)

- **Attributes** can be either continuous or discrete (maybe discretized)
- The class is discrete

outlook	temperature	humidity	windy	class
sunny	85	85	false	Don't Play
sunny	80	90	true	Don't Play
overcast	83	78	false	Play
rain	70	96	false	Play
rain	68	80	false	Play
rain	65	70	true	Don't Play
overcast	64	65	true	Play
sunny	72	95	false	Don't Play
sunny	69	70	false	Play
rain	75	80	false	Play
sunny	75	70	true	Play
overcast	72	90	true	Play
overcast	81	75	false	Play
rain	Lab of Data S	cience ⁸⁰	true	Don't Play

Classification: output


A function f(sample) = class, called a **classification model**, that describes/predict the class value given the feature values of a sample obtained by generalizing the samples of the training set

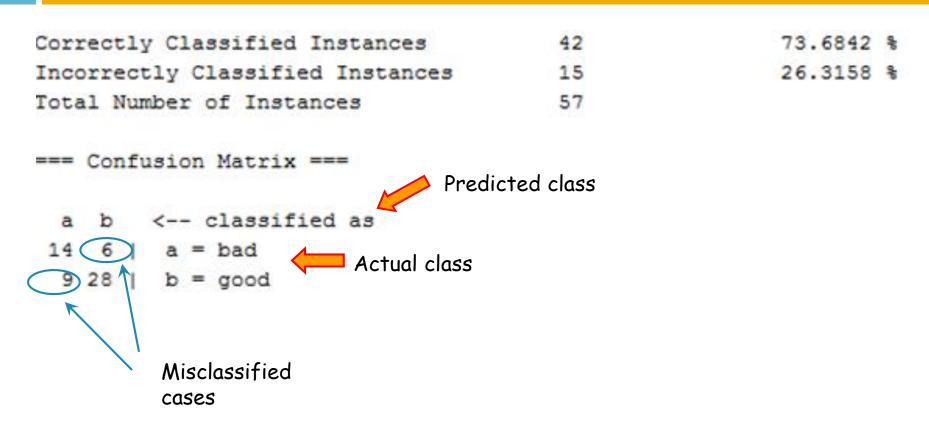
- Usage of a classification model:
 - descriptively
 - Which customers have abandoned?
 - predictively
 - Over a score set of samples with unknown class value
 - Which customers will respond to this offer?

How to evaluate a class. model?

Holdout method

- Split the available data into two sets
- Training set is used to build the model
- Test set is used to evaluate the interestingness of the model
 - Typically, training is 2/3 of data and test is 1/3

How good is a classification model?


Stratified holdout

- Available data is divided by stratified sampling wrt class distribution
- (Stratified) n-fold cross-validation
 - Available data divided into n parts of equal size
 - For i=1..n, the i-th part is used as test set and the rest as training set for building a classifier
 - The average quality measure of the n classifiers is statistically more significative than the holdout method
 - The FINAL classifier is the one training from all the available data
 - Cross-validation is useful when data is scarce or attribute distributions are skewed

Quality measures: accuracy

- Accuracy: percentage of cases in the test set that is correctly predicted by the model
 - E.g., accuracy of 80% means that in 8 cases out of 10 in the test set the predicted class is the same of the actual class
- □ Misclassification % = (100 accuracy)
- Lower bound on accuracy: majority classifier
 - A trivial classifier for which f(case) = majority class value
 - Its accuracy is the percentage of the majority class
 - E.g., two classes: fraud 2% legal 98%
 - Its hard to beat the 98% accuracy

Quality measures: confusion matrix

Quality measures: precision

25

Precision: accuracy of predicting "C"

Cases predicted Class=C and with real Class=C

Cases predicted Class=C

Root mean squar Relative absolu Root relative s Coverage of cas Mean rel. regio Total Number of	te error quared ern es (0.95] n size (0.	evel) 95 level	0.32 53.83 75.46 97.89) 73.30 16606	62 % 5 % 923 % 948 %					
=== Detailed Ac	curacy By	Class ==	=	769	% of time	s predi	ctions >5	iOK are a	correct
Weighted Avg.	TP Rate 0,594 0,942 0,859	FP Rate 0,058 0,406 0,323	Precision 0,760 0,881 0,852	Recall 0,594 0,942 0,859	F-Measure 0,667 0,910 0,852	MCC 0,586 0,586 0,586	ROC Area 0,881 0,881 0,881	PRC Area 0,748 0,943 0,896	Class >50K <=50K
=== Confusion M	atrix ===								
a b 2346 1605 740 11915	< classi a = >5 b = <=	OK							

Quality measures: recall

26

Recall: coverage of predicting "C"

Cases predicted Class=C and with real Class=C

Cases with real Class=C

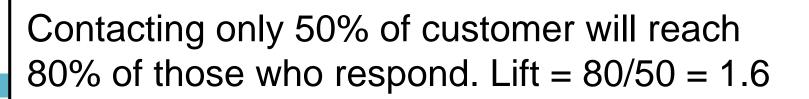
0.3213	
53.8362 %	
75.46 %	
97.8923 %	
73.3048 %	
16606	
	53.8362 % 75.46 % 97.8923 % 73.3048 %

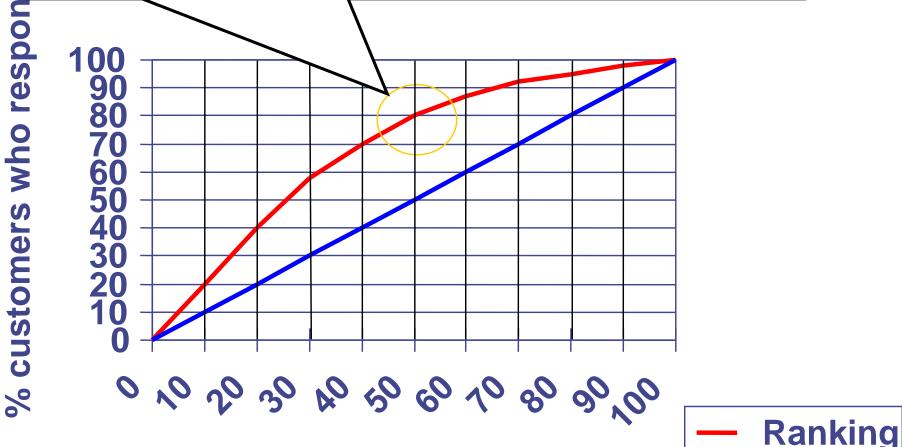
59,4% of real class >50K are found by predictions

	TP Rate FP Rate Precision Resalt F-Measure MCC ROC Area PRC Area Class 0,594 0,058 0,760 0,594 0,667 0,586 0,881 0,748 >50K								
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
	0,594	0,058	0,760	0,594	0,667	0,586	0,881	0,748	>50K
	0,942	0,406	0,881	0,942	0,910	0,586	0,881	0,943	<=50K
Weighted Avg.	0,859	0,323	0,852	0,859	0,852	0,586	0,881	0,896	

=== Confusion Matrix ===

a b <-- classified as 2346 1605 | a = >50K 740 11915 | b = <=50K


=== Detailed Accuracy By Class ===


Measures: lift chart

- Classifier: f(sample, class) = confidence
 - and then f(sample) = argmax_{class} f(sample, class)
 - E.g., f(sample, play) = 0.3 f(sample, don't play) = 0.7
- Samples in the test set can be ranked according to a fixed class
 - Rank customers on the basis of the classifier confidence they will respond to an offer

Lift chart

- X-axis: ranked sample of the test set
- Y-axis: percentage of the total cases in the test set with the actual class value included in the ranked sample of the test set (i.e., recall)
- Plots: performance of a classifier vs random ranking
- Useful when resources (e.g., budget) are limited

% customers according to some order

Lab of Data Science

Random

Lift Chart - variants

- \Box Lift(X) = recall(X)
 - Estimation of random classifier lift
 - Previous example, Lift(50%) = 80%
- \Box LiftRatio(X) = recall(X) / X
 - Ratio of lift over random order
 - Previous example, LiftRatio(50%) = 80% / 50% = 1.6

Profit chart

Given a cost/benefit model, the Y axis represent the total cost/gain when contacting X and not contacting TestSet\X

The unbalancing problem

For unbalanced class values, it is difficult to obtain a good model

- **Fraud = 2%** Normal = 98%
 - The majority classifier is accurate at 98% but it is not useful
- Oversampling and Undersampling
 - Select a training set with a more balanced distribution of class values A and B
 - 60-70% for class A and 30-40% for class B
 - By increasing the number of cases with class B (oversampling) or by reducing those with class A (undersampling)
 - **The training algorithm has more chances of distinguishing characteristics of A VS B**
 - The test set MUST have the original distribution of values

Cost Sensitive Classifier, Ensembles (bagging, boosting, stacking)

Weights errors, build several classifiers and average their predictions

³¹ Rule based classification

Lab of Data Science

Rule-Based Classifier

Classify records by using a collection of "if...then..." rules

- \Box Rule: (Condition) \rightarrow y
 - where
 - Condition is a conjunctions of attributes
 - y is the class label
 - LHS: rule antecedent or condition
 - RHS: rule consequent
 - Examples of classification rules:
 - (Blood Type=Warm) ∧ (Lay Eggs=Yes) → Birds
 - (Taxable Income < 50K) ∧ (Refund=Yes) → Evade=No Lab of Data Science

Rule-based Classifier (Example)

Γ	Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
ł	numan	warm	yes	no	no	mammals
F	oython	cold	no	no	no	reptiles
5	salmon	cold	no	no	yes	fishes
۱	whale	warm	yes	no	yes	mammals
f	rog	cold	no	no	sometimes	amphibians
ł	komodo	cold	no	no	no	reptiles
k	oat	warm	yes	yes	no	mammals
F	bigeon	warm	no	yes	no	birds
	cat	warm	yes	no	no	mammals
	eopard shark	cold	yes	no	yes	fishes
t	urtle	cold	no	no	sometimes	reptiles
F	penguin	warm	no	no	sometimes	birds
F	porcupine	warm	yes	no	no	mammals
e	eel	cold	no	no	yes	fishes
5	salamander	cold	no	no	sometimes	amphibians
Q	gila monster	cold	no	no	no	reptiles
F	olatypus	warm	no	no	no	mammals
C	lwc	warm	no	yes	no	birds
C	dolphin	warm	yes	no	yes	mammals
e	eagle	warm	no	yes	no	birds

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) $\xrightarrow{\text{Science}}$ Amphibians

Application of Rule-Based Classifier

- A rule *r* covers an instance x if the attributes of the instance satisfy the condition of the rule
 R1: (Give Birth = no) ∧ (Can Fly = yes) → Birds
 - R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
 - R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
 - R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
 - R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

Rule Coverage and Accuracy

• Coverage of a rule:

 Fraction of records that satisfy the antecedent of a rule

Accuracy of a rule:

 Fraction of records that satisfy both the antecedent and consequent of a rule

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

 $(Status=Single) \rightarrow No$

Coverage = 40%, Accuracy = 50%

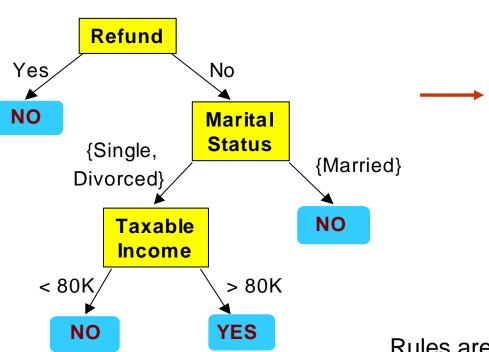
How does Rule-based Classifier Work?

- R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
- R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
- R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
- R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
- R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A lemur triggers rule R3, so it is classified as a mammal

- A turtle triggers both R4 and R5
- A dogfish shark triggers none of the rules


Characteristics of Rule-Based Classifier

Mutually exclusive rules

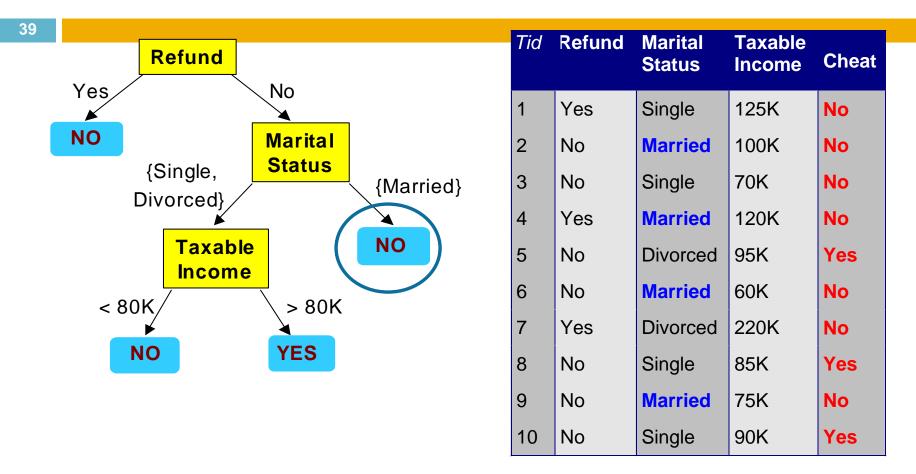
- Classifier contains mutually exclusive rules if the rules are independent of each other
- Every record is covered by **at most** one rule
- Exhaustive rules
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by at least one rule

From Decision Trees To Rules

38

Classification Rules

(Refund=Yes) ==> No


(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive Rule set contains as much information as the tree

Rules Can Be Simplified

Initial Rule: (Refund=No) \land (Status=Married) \rightarrow No Simplified Rule: (Status=Married) \rightarrow No

Effect of Rule Simplification

40

Rules are no longer mutually exclusive

- A record may trigger more than one rule
- Solution?
 - Ordered rule set
 - Unordered rule set use voting schemes

- Rules are no longer exhaustive
 - A record may not trigger any rules
 - Solution?
 - Use a default class

Building Classification Rules

Direct Method:

- Extract rules directly from data
- e.g.: RIPPER, CN2, Holte's 1R
- Indirect Method:
 - Extract rules from other classification models (e.g. decision trees, neural networks, etc).
 - e.g: C4.5rules