LABORATORY OF DATA SCIENCE

Association Rules

Computer Science Department, University of Pisa

Items, transactions, transaction db

- □ Let $I = \{ a_1, ..., a_n \}$ be a finite set $a_i \in I$ is called an **item**
- □ A itemset I is a subset of I□ I ⊂ I
- □ A **transaction** t is an itemset with an identifier
 - \blacksquare t = (i, I) with I \subseteq I also written $t_i \subseteq I$
- A transaction database is a finite set of transactions
 - \square D = $\{t_i \mid i = 1 \dots d, t_i \subseteq I \}$

- Transactional
 - A row for each transaction (id not necessary)
 - List of items in the transaction

milk, sugar, water
beer, diapers
...

Not available in Weka

- Tabular
 - Two columns
 - transaction ID
 - item

†ID	item	
1	milk	
1	sugar	
1	water	
2	beer	
• • •	• • •	

- Filter available in Weka: <u>denormalize</u>
 - Use the GUI Chooser -> Tools -> Package Manager to install it

- Binary
 - A column for each item
 - A row for each transaction (id not necessary)
 - Cell value
 - true (false) if the item is (not) in the transaction

milk	sugar	•••	diapers
true	true		false
false	false		true
• • •	• • •	• • •	• • •

■ In Weka use '?' for false

- Relational
 - □ Item are of the form att=value
 - **att** is an attribute, **value** is a value in its domain
 - A row for each transaction (id not necessary)
 - Cell value
 - value if the item att=value is in the transaction

income	status	•••	age
high	married		20-30
medium	single		40-50
• • •	•••	•••	• • •

Available in Weka of Data Science

Support & Confidence

- \square Association rule $X \rightarrow Y$
 - \square X, Y itemsets and X \cap Y = \emptyset
- \square Classification rule $X \to \mathbb{C}$
 - □ X itemset, C class item, C ∉ X
 - Common in the relational format
- Support of an itemset
 - $\square \operatorname{supp}(I) = |\{t \in D \mid I \subseteq t\}|$
 - relative support: supp(I)/|D|

Support & Confidence

4-fold contingency table

$$\begin{array}{c|ccc} \mathbf{X} \to \mathbf{Y} \\ \hline & \mathbf{Y} & \neg \mathbf{Y} \\ \hline \mathbf{X} & a & b \\ \hline \neg \mathbf{X} & c & d \end{array}$$

- \square supp(X \rightarrow Y) = a = supp(X,Y)
- \neg conf(X \rightarrow Y) = a/(a+b) = supp(X,Y)/supp(X)
- \square coverage(X \rightarrow Y) = a+b = supp(X)
- □ lift(X \rightarrow Y) = conf(X \rightarrow Y)/conf(true \rightarrow Y) = supp(X,Y)/(supp(X)*supp(Y))

Lab of Data Science

Software for AR mining

- Weka
 - Binary and relational format
- □ Frida
 - http://www.borgelt.net/frida.html
 - Transactional format
- SQL Server Analysis Services
 - Relational format
- A lot of research and commercial systems
 - http://fimi.cs.helsinki.fi
 - □ http://www.kdnuggets.com/software/associations.html
 Lab of Data Science

Demo and practice

- Demo on the supermarket.arff dataset
- Practice on the credit-g.arff dataset
 - Objective:
 - Find conditions of past bad credit
 - Method
 - Find classification rules with class=bad
 - Rank them wrt which measure?