BUSINESS INTELLIGENCE LABORATORY

Practice on a Classification Problem

Dataset

- □ ee_dataset.arff
- A dataset of 7.500 customers of a German electric power company
- Some customers intend to cancel their subscription (attribute canceler)
- A special promotion consisting of a discount on the price of electricity must be planned to prevent cancelers to abandon.

Task 1: Preprocessing

- Split the dataset into training and test
- Investigate the meaning of attributes from the provided documentation
- Study the distribution of data and the relevance of attributes
- If needed, create derived attributes

Task 2: Maximaze accuracy

Extract a classification model that predicts whether a customer is a canceler, so that its accuracy is maximized.

Task 2: Classification methods

- Classification model
 - J48, NaiveBayes, Metaclassification
- Parameters of classification algorithm
 - J48: tree pruning, confidence, stop earlier, ...
- Input dataset:
 - Preprocessing on attributes (selection, derived, ...)
 - Preprocessing on instances (missing values, oversampling)

Task 3: Revise objectives

Is it really the accuracy that one intends to maximize?
Maximize the following gain function:

	No offer sent	Offer sent
Non Canceler	72,00 Euro	66,30 Euro
Canceler	0 Euro	43,80 Euro

Task 4: Descriptive use

Does your classifier provide a description of the profiles of canceler customers?

Task 5: Lift Chart

Assume to have limited amount of resources, so that at most 250 offers can be sent out. How many cancelers does your classifier can reach?

Task 6: Validation set

Answer to Task 3 and Task 5 using as test set a totally new set of data (ee_validation.arff). How do the performances of your classifier change?