
Single Resource
Capacity Allocation

Part 2

The Many-Class Problem

We next consider the general case of n > 2 classes and stages.

We again assume that the demand arrives one class at a time.

During the first stage we receive requests for seats at price p1,
during the second at price p2 > p1, and so on till stage n with the
maximum price pn.

Littlewood’s Rule is not easily extendable to the general case.

Applying the same logic, we would build a huge decision tree.

In the 2-stage case, in the second stage we can either sell a seat
with a certain probability or loose it. In the n-stage case, we can
sell it with a certain probability or keep it for the third stage,
where it can be sold with a certain probability or …

We have to take into account conditional probability, which leads
us to complex and unmanageable decision trees. The next
picture shows a 3-stage decision tree.

Luckily, we have at disposition a very powerful method to state
this problem in an elegant and compact way.

With a few equations we represent all stages of the problem,
summarizing what we could say with big trees.

This method is Dynamic Programming, a venerable 60-years old
methodology applicable to a vast realm of optimization
problems.

The name is somewhat old-fashioned: nowadays we would use
the term Planning instead of Programming.

Let us formalize the problem.

We have n stages with n prices p1 < p2 < … < pn-1 < pn and n unknown
demands D1, …, Dn, for which we have a forecasting methods (not
explained here).

We want to maximize the revenue over the whole cycle of n stages.

Let st be the number of seats sold at stage t.

Our problem can be mathematically stated as

max 𝑠𝑡𝑝𝑡

𝑛

𝑡=1

subject to

 𝑠𝑡 ≤ 𝐶

𝑛

𝑡=1

max 𝑠𝑡𝑝𝑡

𝑛

𝑡=1

subject to

 𝑠𝑡 ≤ 𝐶

𝑛

𝑡=1

The first block denotes the objective: maximizing the sum of every
daily revenue, each one expressed as product of quantity sold and
price.

The second block denote a constraint: the overall quantity sold cannot
exceed the available capacity (the number of seats).

In this formulation, st for t = 1, …, n are the decision variables, also
known as control variables.

max 𝑠𝑡𝑝𝑡

𝑛

𝑡=1

subject to

 𝑠𝑡 ≤ 𝐶

𝑛

𝑡=1

To better understand the problem, let us describe the decision process. At each stage t the following
sequence of events occurs:

1. We have number xt of available seats, i.e. the remaining capacity. It is 𝑥𝑡 = 𝐶 − 𝑠𝑖
𝑡−1
𝑖=1 , capacity

minus quantity already sold.
2. We observe a demand Dt.
3. We decide on a quantity ut of this demand to accept. To be meaningful, it must be 0 ≤ ut, ut≤ Dt

and ut ≤ xt.
4. We collect revenue ptut
5. We proceed to stage t + 1 with a remaining capacity 𝑥𝑡+1 = 𝑥𝑡 − 𝑢𝑡.

Be careful: control variable ut are really decided before observing demand. We are pretending we set
them after. We can do it because the optimal choice of control variables does not actually require
knowledge of demand. We are going to see this point.
This is a key point to understand the whole procedure.

max 𝑠𝑡𝑝𝑡

𝑛

𝑡=1

subject to

 𝑠𝑡 ≤ 𝐶

𝑛

𝑡=1

Control variables st are not very comfortable to manage, because
what we really set are the ut variables. So, we express them as

𝑠𝑡 = min {𝐷𝑡, 𝑥𝑡, 𝑢𝑡}

We are saying that the number of seats really sold has both
demand and remaining capacity as upper bounds at each time.

max 𝑠𝑡𝑝𝑡

𝑛

𝑡=1

subject to

 𝑠𝑡 ≤ 𝐶

𝑛

𝑡=1

We rewrite the problem in a more explicit form:

max 𝑝𝑡𝑢𝑡

𝑛

𝑡=1

subject to

 𝑢𝑡 ≤ 𝐶

𝑛

𝑡=1

0 ≤ 𝑢𝑡 ≤ min {𝐷𝑡, 𝑥𝑡}

The Dynamic Programming Formulation

The key idea of the Dynamic programming methodology is to
reduce the n-stages problem to a 2-stages problem, where the
new second stage aggregate all original stages but the first.

Imagine we have 4 stages.

The original problem is to maximize the revenue over 4 stages.

We solve a modified problem:

Maximize the sum of 1st stage revenue and all next revenue from
2nd to 4th.

The difference is subtle: the first stage has single and well
defined demand D1 but the “next” stages has no demand, at
least not in the obvious meaning.

The revenue for stages 2-to-4 has to be computed solving a second problem
which is of the same form, but covering 3 stages instead of 4.
The second problem is:
Maximize the sum of 2nd stage revenue and all next revenue from 3rd to 4th.
Then we have to solve a third problem:
Maximize the sum of 3rd stage revenue and all next revenue from 4th to 4th.
Then we have to solve a fourth problem:
Maximize the sum of 4th stage revenue and all next revenue, which do not
exist.
The last problem is easy to solve: sell every possible seat, without denying any
booking. Otherwise, the plane will depart with some seat empty which could
have been sold.
Once the fourth problem is solved, the third is easy, because it is a 2-stages
problem, and we con solve it with Littlewood’s rule.
Once solved the third problem, it is easy to solve the second for the same
reason, then the first problem.

The whole procedure is not intuitive, yet extremely powerful.

It is worth studying carefully what follows, because this is a
formidable tool for optimization.

Let us introduce a new key concept, the value function Vt(x).

It represents the expected revenue of having x seats available at
time t under the assumption we will use them in the optimal
way.

Let us have capacity C = 100. At stage 1 we want to manage
these 100 seats at the best. If we will really succeed in doing it,
we will get revenue V1(100). This is a definition: we do not know
what V1(100) is. It is the revenue we are trying to get, choosing
the right ut at each stage.

If 5 is the best choice for the control variable ut at time 1,

then we can write:
𝑉1 100 = 5𝑝1 + 𝑉2(95)

We know neither V1(100) nor V2(95), yet we know this is true,
under the hypothesis that 5 is really the optimal number of seats
to make available for sale at time 1.

The best action at time 1 is to sell 5 seats. The best course of
action form time 2 on will collect revenue V2(95). Consequently,
the best course of action at time 1 will collect 5𝑝1 + 𝑉2(95).

Note that ut is supposed to be less than the demand Dt at time t.
So, we sell exactly ut seats because enough customers ask for
them. Number 5 is not the best choice in absolute, but that
demand given.

We do not really know in advance what is the best value for ut.

Let us rewrite the equation as relationship among unknown
quantities:

𝑉𝑡 𝑥 = E
𝐷𝑡
[max
0≤𝑢≤min {𝐷𝑡,𝑥}

{𝑝𝑡𝑢 + 𝑉𝑡+1(𝑥 − 𝑢)}]

For each possible value of demand at time t, we compute the
expected revenue if we maximize the revenue under that
scenario. Then we weight each scenario revenue with the
scenario probability. The weighted sum is the expected value at
time t if we have a capacity of x seats available.

Maximizing the revenue means to choose the best possible u,
compatibly with capacity and demand at time t.

The recursive form of equation needs a final condition stopping the
recursion.

We introduce a stage n + 1 when each seat has a zero value, because
the plane has already departed:

Vn+1(x) = 0

whichever x is.

Now we have two equations capable of express the maximum revenue
attainable with every possible capacity along a decision process of any
possible length.

Note that the rigorous form of equation should be max E[.] instead of
E[max{.}}. Yet we can use our form because it is simpler and almost
equivalent for practical purposes.

The Insight Behind

When we decide whether to make a seat immediately available
for sale we have to balance between

1. the present revenue we gain if it is available, i.e. the present
price, and

2. the future revenue we can gain if it is not immediately
available for sale and we will follow an optimal strategy in
the future.

One remark is that optimality of our present decision depends
on optimality of our future behavior.

Another fundamental remark is that the decision process goes
backward: when planning, we start from the last decision step
and move toward the first one, with a temporal inversion.

Optimal Policy

We define expected marginal value of capacity as
∆𝑉𝑡 𝑥 = 𝑉𝑡(𝑥) − 𝑉𝑡(𝑥 − 1)

the expected revenue of the x-th seat.

It has to properties:

1. ∆𝑉𝑡(𝑥 + 1) ≤ ∆𝑉𝑡(𝑥) (decreasing in capacity)

2. ∆𝑉𝑡+1(𝑥) ≤ ∆𝑉𝑡(𝑥) (decreasing in time)

Intuitive support for these properties:

1. the second seat is less worth than the first because it is more
subject to risk of remaining unsold;

2. while time is passing, you have less options for your
strategies, which becomes less effective.

Now we can write:
𝑉𝑡 𝑥 = 𝑉𝑡+1 𝑥

+ 𝐸𝐷[max
0≤𝑢≤min {𝐷𝑡,𝑥}

{ (𝑝𝑡 − ∆𝑉𝑡+1(𝑥 + 1 − 𝑧))

𝑢

𝑧=1

}]

Because V is decreasing in capacity, the
term 𝑝𝑡 − ∆𝑉𝑡+1 𝑥 + 1 − 𝑧 is decreasing in z.

Thus, it is optimal to increase u until that term is negative or the
upper bound min{Dt, x} is reached, whichever comes first.

Now we have the optimal protection level:
𝑦𝑡
∗ = max {𝑥|𝑝𝑡−1 < ∆𝑉𝑡−1(𝑥)}

