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Probability distributions 
Part 1 
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Random variables 

A random variable can take on a set of possible different 
values (similarly to other mathematical variables), each with 
an associated probability. 
Its possible values are possible outcomes of a random event, 
i.e. an "experiment" whose value is uncertain. 
If you toss a coin, the outcome can assume two possible 
values, Head and Tail. We associate these values with two 
numerical values, say 0 and 1 (the association is arbitrary). 
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Intuitively, we define a random variable defined in the set 
{0, 1}with this probability distribution: 

P(0) = 0.5, P(1) = 0.5 
[Note: we are assuming the coin is "fair".] 
If we roll a fair dice, the probability distribution is 
P(1) = 1/6, P(2) = 1/6, …, P(6) = 1/6 
The choice of values 1, 2, …, 6 is arbitrary, chosen only 
because natural. Every choice of 6 distinct numerical values 
would work. 
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If we have an urn with 6 white balls, 3 black balls and 1 grey 
ball, the probability distribution is 
P(white) = 0.9, P(black) = 0.3, P(grey) = 0.1 
We have written names instead of numbers for clarity. 
 
All these examples are about finite discrete probability 
distributions: we have a finite collection of possible values 
which are natural numbers, or representable as natural 
numbers. 
A distribution can be infinite and can be continuous, i.e. can 
assume infinite real values. 
We will see both discrete and continuous probability 
distributions. 
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Bernoulli distribution 

The Bernoulli distribution is a model for a random event with 
two possible outcomes. 
Conventionally, its values are in {0, 1} and the distribution is 

Bernoulli(p): P(1) = p, P(0) = 1 – p 
If p = 0.5, this is a model for a fair coin toss. If p ≠ 0.5, it is a 
model for an unfair coin toss. 
Note: the sum of single probabilities must be 1. This is true 
for every discrete distribution. 



Two graphical representations of Bernoulli distribuitons. 
X-axis: possible values (here only 0 and 1). 
Y-axis: probability of the x value. 
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For a discrete distribution, the probability of a certain value is 
named probability mass function and written as pmf: 
pmf(1) ≡ P(outcome = 1) = 0.5 
where the symbol ≡ means "is defined as". 
 
If we want to model the event "an announce is clicked or 
not", we can use a Bernoulli distribution whose parameter p is 
the CTR (click through rate), i.e. the ratio 

clicks / impressions 
 



8 

Pay attention. The interesting point here is that we do not 
know what is p. 
We are building a model: we think of the process of an user 
clicking or not clicking an ad in terms of an abstract concept, 
a random variable. We assume it is a Bernoulli variable. 
The CTR is a virtual quantity, something we imagine as a 
click generator. 
The observed CTR is a different thing: it is the ratio of clicks 
versus impressions which happened. 
The observed CTR is modeled as a realization of a random 
variable. 
Another view is that the observed CTR is a "sample" 
extracted from a population of possible realizations of the 
random variable. 
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If we know the parameter p of the Bernoulli(p), of course we 
know that 

P(1) = p and P(0) = 1 – p 
This is trivial because implicit in the definition. Yet, the 
inverse problem is far from trivial. 
We want to estimate the unknown parameter of a Bernoulli 
random variable observing the outcome of an experiment. 
Before delivering an impression, what can we say about p, the 
CTR? The intuitive answer is: nothing. It can be every 
number in the real segment [0, 1] with the same probability. 
Note: there are infinite possible real values for p. 
The CTR is a random variable with a continuous probability 
distribution! The CTR distribution is much more complex 
than a Bernoulli. 
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An impression was delivered, the user did not click, i.e. the 
outcome was 0. The observed CTR is 0/1 = 0. 
What can we say now about p, the CTR? 
First: the "true" CTR cannot be 1. If it was 1, necessarily it 
would have given outcome 1 (1 is click, 0 is not click). 
The observed CTR is not compatible with the hypothesis that 
the true CTR is 1. 
Excluding 1 is not very useful: infinite values in the interval 
[0, 1) are still possible. 
Yet, we really know something more than "it is not 1". 
Are you more confident in the assertion 
The "true" CTR is in the interval [0.85, 0.95], or with 
The "true" CTR is in the interval [0.05, 0.15] ? 
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Of course, a CTR value around 10% is now more credible 
than a value around 90%. 
In Bayesian terms: we started with no preference, but after 
observing events we are a certain opinion about the unknown 
CTR. The values around 10% are more likely than values 
around 90%, once we have observed the outcome non-click. 
 
Is it possible to estimate probabilities like 
P(a < x < b) where x ~ Bernoulli(p)? 
(the symbol ~ means x is an observed outcome of a Bernoulli 
distribution of parameter p). 
The answer is yes. 
 



After having observed 0, we can say that the unknown ctr is less or equal 
to 0.4 with probability 0.64. Prob(0.4 < ctr <= 0.5) = 0.11. 
Note how the distribution of possible ctr values are "anti-mirrored". 
After observing 1, Prob(ctr < 0.6) = 0.36, which is 1 – 0.36. 
Why? Because 0.6 = 1 – 0.4. 
 
[Computation with MS Excel] 

ctr <= this value probability delta ctr <= this probability delta
0,0 0 0,00 0,0 0 0,00
0,1 0,19 0,19 0,1 0,01 0,01
0,2 0,36 0,17 0,2 0,04 0,03
0,3 0,51 0,15 0,3 0,09 0,05
0,4 0,64 0,13 0,4 0,16 0,07
0,5 0,75 0,11 0,5 0,25 0,09
0,6 0,84 0,09 0,6 0,36 0,11
0,7 0,91 0,07 0,7 0,49 0,13
0,8 0,96 0,05 0,8 0,64 0,15
0,9 0,99 0,03 0,9 0,81 0,17
1,0 1 0,01 1,0 1 0,19

After we observe 0 After we observe 1
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Algorithms exist able to compute the cumulative distribution 
function, which is 

cdf(z) ≡ Prob(x <= z) 
the probability that a random value is less than or equal to z. 
If you want to compute the probability that the unknown ctr is 
between 0.2 and 0.5, you can compute 

cdf(0.5) – cdf(0.2) 
The cdf is available in Excel and many other software tools. 
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Binomial distribution 

The Bernoulli distribution models a single event 0/1, for us an 
impression which can give us a click or not. 
Drawing inference from a single impression is not interesting 
in itself. We work with thousand or million impressions. 
We need to understand not  a single event but a long list of 
events, each one modeled as a Bernoullian event. Say, a 
repeated Bernoulli. 
The Binomial distribution is what we need. 
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Binomial(n, p) is the distribution of probability of outcomes when we 
have n outcomes each one Bernoulli(p). 
We toss a fair coin twice. The possible outcomes are 

00 01 10 11 
(choose 1 for Head and 0 for Tail or vice versa). 
What is the probability of getting 0 successes? 0.25. 
P(0) = 0.25 
P(1) = 0.50 
P(2) = 0.25 
We are not interested in the sequence, only in the number of successes. 
This is a Binomial(2, 0.5), two trials with probability of success 0.5. 

 



We do 15 trial with success probability 20%. 
Prob(3 successes) = 0.25, Prob(6 successes) = 0.04. 
Prob(more than 10 successes) close to zero. 

https://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjh_q-L1NDPAhUMcBoKHZzLCVoQjRwIBw&url=https%3A%2F%2Fonlinecourses.science.psu.edu%2Fstat414%2Fnode%2F70&psig=AFQjCNGAN8xHWKQSnKhSKSg1GFg799ENEQ&ust=1476203104627771


When the ctr increases, the probability distribution moves rightward. 
High numbers of hits become more likely. 
The curve becomes flatter moving to 0.5. After 0.5 it mirrors low values. 
The curve for p = 0.8 mirrors that for 0.2, on the right side. 
The flattest curve is for the "equilibrium" value. 
Intuitively: p = 0.5 gives the max uncertainty. 
 

http://www.google.it/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiZxoDY1NDPAhXDDxoKHQL6CU4QjRwIBw&url=http%3A%2F%2Fwww.roymech.co.uk%2FUseful_Tables%2FStatistics%2FStatistics_Distributions.html&psig=AFQjCNGAN8xHWKQSnKhSKSg1GFg799ENEQ&ust=1476203104627771
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Again, the problem we are mainly interested in is not 
predicting what can happen in 1,000,000 impressions if the 
CTR is 1%. 
We do not know the CTR. 
We have the inverse problem: observed an outcome, make 
inference about the unknown parameter. 



Prob(ctr <= 0.06) = 57% 
Prob(0.03 < ctr <= 0.07) = 72% - 8% = 64% 
Indeed, having observed 5 / 100 we feel that the ctr must be around 5%. 
Prob(ctr > 0.11) = 3% very unlikely. 
If so, we were very unlucky, indeed. 

After we observe 5 clicks on 100 imps 
ctr <= this value probability delta 

0,01 0% 0,00 
0,02 2% 0,02 
0,03 8% 0,07 
0,04 22% 0,13 
0,05 39% 0,17 
0,06 57% 0,18 
0,07 72% 0,15 
0,08 83% 0,11 
0,09 90% 0,07 
0,10 95% 0,05 
0,11 97% 0,03 

We are able to compute Prob(parameter <= threshold). 
It is the cdf, cumulative density function. 
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Gist 
To model the single event  
an impression is delivered which may give a click 
we use a distribution Bernoulli(p), where p is the probability of getting a click, i.e.  
the CTR. 
Observing the outcome of a single event (0 or 1 click) we can estimate 

Prob(the unknown CTR is in the range a..b) 
for each a and b between 0 and 1. 
To model the event many impressions are delivered we use a distribution 
Binomial(n, p), where n is the number of impressions and p is the CTR, again. 
If we can estimate p, we can forecast the number of clicks we will get, i.e. 

Prob(we get x clicks out of n impressions) 
Vice versa, if we observe k clicks out of n impressions, we can estimate the 
unknown CTR, i.e. 

Prob(the unknown CTR is in the range a..b) 
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