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Exercise at home from Lesson 01

Exercise at home.Prove or disprove:

® |f Ais independent of B then A is conditionally independent of B given C
In formula, if P(AN B) = P(A)P(B) then P(AN B|C) = P(A|C)P(B|C)
Counterexample.
Q={H, T} x{H, T} two coin tosses
A = {first coin is H} = {(H, H),(H, T)} P(A) =12
® B = {second coinis H} = {(H, H),(T,H)} P(B) =12

P(AN B) =1/a= P(A)P(B)

C = {both coins have same result} = {(H,H),(T, T)} P(C) =1/
P(ANBNC) P(ANC) P(BNC(C)

Bla = Y2 # PAIOP(BIC) = “ 5 - g = s

P(AN B|C) =

Same counterexample shows that pairwise independence is weaker than independence: A, B, C are

pairwise independent, but not independent! 2/18



Exercise

Exercise. Prove or disprove:
® |f A, B and C are independent, then A is conditionally independent of B given C

Proof. Independence implies P(AN BN C) = P(A)P(B)P(C) and then:

P(ANB|C) = P(Ag(i)m )_ P(A),IZ%P(C) = P(A)P(B)

Independence also implies P(AN C) = P(A)P(C) and P(BN C) = P(B)P(C), and then:

PAIOP(EIC) — PANPENC) _ PUPOPEIPC) _ ooy
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An application to machine learning classifiers

In formula, if P(AN B) = P(A)P(B) and P(AN B|C) # P(A|C)P(B|C)
Can be rewritten as if P(A|B) = P(A) and P(A|B N C) # P(A|C)

e O = {summer, winter} x {long-hair, short-hair} x {eat-icecream, dont-eat-icecream}

o A= {(,_eat-icecream)}

® B = {(_long-hair, )}

o C = {(summer,_, )}
How do we read the result above?

e if P(A|B) = P(A) read as “long-hair is not predictive of eating ice cream”

e if P(A|BN C) # P(A|C) read as “in the summer, long-hair is predictive of eating ice cream"
What can we conclude in general for features of machine learning classifiers?

® A feature can be non-relevant in isolation, but relevant together other featurs

® \We cannot do feature selection by looking at a single feature at a time!
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Testing for Covid-19

A new test for Covid-19 (or Mad-Cow desease, or drug use) has been developed.

e O = { people aged 18 or higher }

e + = { people tested positive } = — = { people tested negative } = +¢

e C = { people with Covid-19 }  C¢ = { people without Covid-19 }
In lab experiments, a sample of people with and without Covid-19 tested

® P(+|C)=0.99 [Sensitivity/Recall/True Positive Rate]

® P(—|C°)=0.99 [Specificity/True Negative Rate]
What is the probability | really have Covid-19 given that | tested positive? [Precision]

P(Cl+) = P(CN+) _ P(+IC)-P(C) _ P(+|C) - P(C)
P(+) P(+) P(+|C) - P(C) + P(+[C¢) - P(C¥)

B 0.99- P(C)
P(Cl+) = 0.99- P(C)+0.01-(1— P(C))

P(C) is unknown!
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Testing for Covid-19

P(C), the probability of having Covid-19, is unknown. Let's plot P(C|+) over P(C):

e For P(C)=0.02, P(C|+) =
e For P(C) = 0.06, P(C|+) = .
® For P(C)=0.10, P(C|+) =
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See R script
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Bayes' Rule

BAYES’ RULE. Suppose the events C7, Co, ..., C), are disjoint and
CiUCyU---UC,, = Q. The conditional plobablhty of C;, given an
arbitrary event A, can be expressed as:

P(A|Cy) - P(Cy)
P(A|C1)P(C1) + P(A|C2)P(C2) + - -+ + P(A]| Cm)P(Crm)

P(C;| A) =

It follows from P(C;|A) = % and the law of total probability

Useful when:

» P(GC;|A) not easy to calculate
» while P(A|C) and P(C;) are known for j=1,...,m
» E.g., in classification problems (see Bayesian classifiers from Data Mining)

® P(G;) is called the prior probability

P(C;i|A) is called the posterior probability (after seeing event A)
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(Machine Learning) Binary Classifiers

Q={f, m} x Nx {+,-}
Features:
» Ggender, G=Ffis{weQ|w=(f,_.)}
» Aage, A=25is {weQ|w=(,25.)}
> Y true class
OY=+4+is{weQ|w=(,-+)} eg., Covid-19 positive
OY=—-is{weQ|w=/(,-,—)} eg., Covid-19 negative
Binary Classifier: Y : {f, m} x N — {+, —} predicted class
> ):’: +is { (g,a,c) € Q| \:/((g, a)) = +}, e.g, predicted Covid-19 positive
» Y=—is{(g,a,¢c)€Q| Y((g,a)) = —}, eg., predicted Covid-19 negative

P(Y=Y),ie, PIY=4NY=H)+P(Y=—NY =) [True Accuracy]
P(Y =+|Y =+) [True Precision]
P(Y = +|Y =+) [True Recall]

Such probabilities are unknown! They can only be estimated on a sample (test set)
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Precision of classifiers

Confusion matrix over the test set! True ¥
+ — Total
. ~ |+ TP | FP PP
Predicted Y — EN T TN PN
Total P N P+N
* P(Y=+|Y=+)~TP/P [Sensitivity/Recall/TPR]
o P(Y=—|Y==)~TN/N [Specificity/ TNR]
e “~" reads as “approximatively” [Probability estimation]
What is the probability | really am positive given that | was predicted positive? [Precision]
A TP
PlY=4+|Y=4)=—=——— isital his?
( +| +) TP Fp S it always this
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Precision of classifiers

True Y
Confusion matrix over the test set! + — Total
. ~ |+ TP | FP PP
Predicted Y — EN T TN PN
A Total P N P+N
* P(Y=+|Y=4)=TP/P [Sensitivity/Recall/ TPR]
e P(Y=—|Y=-)~TN/N [Specificity/ TNR]

[Probability estimation]

® “X" reads as “approximatively”

What is the probability | really am positive given that | was predicted positive? [Precision]
P(Y =+|Y =+) P(Y =+)

P(Y=4+]Y=+4)-P(Y=4)+(1=P(Y =—|Y ==))- P(Y = -)
N TP/P-P(Y =+)

T TP/P-P(Y =+)+(1—TN/N)-(1—-P(Y = 1))

TP/P-P/(P+N) TP

TP/P-P/(P+N)+(1-TN/N)-(1—P/(P+N)) TP+FP
(%) if P(Y =+) = P/(P+ N), i.e., if fraction of positives in the test set is same as population 10/18

P(Y=+|Y =+) =

%)
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Dataset selection

e Let Q= {f, m} x Nx {+,—}x{0,1}, where: /_//'_ o \-\\ 77\‘_\\
»S=vis{weQ|w=(,,,v)} ‘ SN e )
> selected (S =1) or not (S = 0) in the observed dataset |. -"2=,%%" Vol S -

® Typical assumption: class independent selection: \\\ ) -/ \ - - /

P(S=1)= P(S=1]Y = +) = P(S = 1| — )

® Reasons for class dependent selection:

» Bias in data collection [Selection bias]
» Change of distribution over time/domain [Distribution shift]

Confusion matrix (over test set) is unpredictive of true precision/accuracy (over the population)!
® Forms of class dependent selection

» Under-sampling negatives: P(S=1|Y =—-) < P(S5=1]Y =+)=P(5=1)
» Over-sampling positives: P(S=1|Y =+)>P(S=1Y =—-)=P(S=1)
> Prior probability shift: P(S =1|Y = =) £ P(S = 1|Y = +) # P(S = 1)
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Dataset selection

What is the probability | really am positive given that | was predicted positive?

[Precision]
NS TP/P-P(Y = +)
PO =HY =D~ e py = )+ (L= TN/N) - (1= P(Y = 1))
What is P(Y=+)? By the Bayes' rule:
B o P(S=1Y =+)-P(Y =+)
P =H3 =)= s v =1 PV =+ PE =1V = ) - P(Y = )

P(S=1|Y=+
= rtetv= PV =) v-P(Y =+)
%P(Y:ﬂﬂl—myzﬂ) v P(Y=4)+(1-P(Y =4))
where v = % By solving back w.r.t. P(Y = +), we have:

o P(Y=+|S=1) N
P =) =y =i5=n+y Py =5=1 ~ /(PN
since P(Y =+|S=1)~ P/(P+ N).
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Odds ratio y

By the Bayes' rule (2 times):

P(S=1Y=+) P(Y=-),P(Y=-[S=1)

P(S=1]Y=-) P(Y:+)/P(Y=+|S: 1)

is called the odds ratio.
P(Y=-) Npop

~

® odds in the sample space (population): PY=) ~ P is unknown
= pop

P(Y=—|5=1) _ N
P(Y=F5=1) ~ P

In general, v = (Npop/Ppop)/(N/P) with Nyop and Py, from an unbiased dataset.
® Prior shift P(Y =+) ~ P/(P + vN)
® Undersampling P(Y = +) = P/(P + BN) with 5 = Npo,/N > 1
® Oversampling P(Y = +) =~ P/(P + N/a) with o = Ppop/P <1

We do not know ~ but:

® odds in the selected:

® we can estimate/approximate it
® we can reason hypothetically on possible range of values for it.
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Precision of classifiers: correction under shift

True Y
+ — Total
. ~ |+ TP | FP PP
Predicted Y — EN T TN PN

Total P N P+ N
What is the probability | really am positive given that | was predicted positive? [Precision]

TP/P-P/(P+~N) TP
TP/P-PJ(P+~N)+ (1— TN/N)-(1— P/(P+~N)) TP+ ~FP

P(Y =+|Y =+)~

Called Prec = TP/(TP + FP), we also have (correction of precision):

Prec
Prec + (1 — Prec)

Example: for v = 5, Prec = 0.9, we have P(Y = +|Y = +) ~ 0.9/(0.9 + 5 - 0.1) ~ 0.642

P(Y =+|Y =+)~

See R script
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Accuracy of classifiers

True Y
+ - Total
o[ TP | FP | PP
Predicted Y — EN T TN PN
Total P N P+N
* P(Y =+|Y=+)~TP/P [Sensitivity/Recall/TPR]
* P(Y=—|Y=-)~TN/N [Specificity/ TNR]
What is the probability that prediction is correct? [Accuracy]
P(Y=Y)=P(Y=+Y =+)P(Y = +)+ P(Y ==Y = )P(Y = —) &)
mIP_P TN N _TPHTN
T PP+N  NP+N PEN

(%) if P(Y =+) =~ P/(P+ N), i.e., if fraction of positives in the test set is same as population
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Accuracy of classifiers: correction under shift

True Y
+ - Total
. ~ |+ TP | FP PP
Predicted Y — EN T TN PN

Total P N P+N

o Prior shift P(Y = +) ~ P/(P + yN) with v = 8/a = (Npop/Poop)/(N/P)
What is the probability that prediction is correct? [Accuracy]

A

P(Y=Y)=P(Y=+Y =H)P(Y =)+ P(Y = —|Y = 2)P(Y = ) =
JTP_ P TN AN TP+4TN
T PPtAN " N P+AN  P+AN
Example: for v =10, P = N = 1000, TP = 950, TN = 800:

Acc = (TP + TN)/(P + N) = .875 P(Y =Y)=(TP+~TN)/(P++N) ~ 814
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Probabilistic classifier predictions: correction under shift

A probabilistic classifier intended to predict the posterior probability P(Y = +|G = g, A= a)
[predict_proba in Python]

Assume a biased posterior probability $((g,a)) ~ P(Y = +|S = 1,G = g, A= a), due to data shift

How to compute unbiased prediction P(Y = +|G = g, A= a)?

® (lass dependent selection, but feature independent selection:
P(S=1)#P(S=1Y=4)=P(S=1Y=+,G=g,A=2a)

From Bayes rule applied to P'(-) = P(:|G = g, A = a), and following the same reasoning as for
precision, correction under prior probability shift is:

PN

P(Y =+|G=g,A=a)= >((e. )

A~ ~

S((g,a) +(1—-5((g )

® Same formula as for precision!
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Optional references

Optional readings:
® [Sipka et al., 2022] survey methods for prior-shift adaptation (also when ~ is unknown!).

® [Pozzolo et al., 2015] apply correction to the study of effectiveness of undersampling.

@ Toméa¥ Sipka, Milan Sulc, and Ji¥ Matas (2022)
The Hitchhiker's Guide to Prior-Shift Adaptation.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 1516-1524.
https://arxiv.org/abs/2106.11695

[§ Andrea Dal Pozzolo, Olivier Caelen, and Gianluca Bontempi (2015)
When is Undersampling Effective in Unbalanced Classification Tasks?
ECML/PKDD (1) 200-215.

Lecture Notes in Computer Science, volume 9284.

https://doi.org/10.1007,/978-3-319-23528-8_13
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