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Condensed observations: graphical summaries

• Probability models governs some random phenomena

• Confronted with a new phenomenon, we want to learn about the randomness associated with it

▶ Parametric (efficient) vs non-parameteric (general) methods

• Record observations x1,. . . , xn (a dataset)

• n can be large: need to condense for easy visual comprehension

• Graphical summaries:

▶ Univariate: empirical distribution functions, histograms, kernel density estimates
▶ Multi-variate: kernel density estimates, scatter plots
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The empirical CDF

• A r.v. X is completely characterized by its CDF F

• Record observations x1,. . . , xn (a dataset)

• Empirical cumulative distribution function (ECDF):

Fn(x) =
|{i ∈ [1, n] | xi ≤ x}|

n

• Empirical complementary cumulative distribution function (ECCDF): F̄n(x) = 1− Fn(x)

• Estimating F through Fn [Glivenko-Cantelli Thm]

P( lim
n→∞

sup
x

|F (x)− Fn(x)| = 0) = 1

allow for estimating other quantities by plugging Fn in the place of F , e.g., E [X ] as

E [X ] =
∑
a

a · P(X = a) ≈
∑
a

a · |{i | xi = a}|
n

=
1

n

∑
i

xi

• What about p.m.f. and d.f.?

See R script
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https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem


p.m.f.: Barplots

• For discrete data, barplots provide frequency counts for values
▶ approximate the p.m.f. due to the law of large numbers

P(X = a) ≈ |{i | xi = a}|
n

• For continuous data, frequency counting of distinct values do not work. Why?

See R script
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d.f.: Histograms

• Histograms provide frequency counts for ranges of values.

• Split the support to m intervals, called bins:

B1, . . . ,Bm

where the length |Bi | is called the bin width

• Count observations in each bin and normalize them:

Ai =
|{j ∈ [1, n] | xj ∈ Bi}|

n
≈ P(X ∈ Bi )

• Plot bars whose area is proportional to Ai

Ai = |Bi | · Hi Hi =
|{j ∈ [1, n] | xj ∈ Bi}|

n|Bi |

See R script
5 / 14



Choice of the bin width
• Bins of equal width:

Bi = (r + (i − 1)b, r + ib] for i ∈ [1,m]

where r ≤ minimum point and b is the bin width

• Mean Integrated Square Error (MISE), for f̂ density estimation of f :

MISE = E [

∫
(f̂ (t)− f (t))2dt] =

∫ ∫
(f̂ (t)− f (t))2f (x1) . . . f (xn)dtdx1 . . . dxn

• Scott’s normal reference rule (minimize MISE for Normal density):

b = 3.49 · s · n−1/3, where s = σ̂ =
√

1
n−1

∑n
i=1(xi − x̄)2 is the sample standard deviation
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Choice of the bin width

• b = 2 · IQR · n−1/3, where IQR = Q3 − Q1 [Freedman-Diaconis’ choice]
▶ It replaces 3.49 · s in the Scott’s rule by 2 · IQR (more robust to outlier)
▶ Q3 is 75% percentile of x1, . . . , xn
▶ Q1 is 25% percentile of x1, . . . , xn

• Variable bin width
▶ Logarithmic binning in power laws

• Alternative strategy: number of bins given equal bin width b: [other methods]
▶ m = ⌈max xi−min xi

b ⌉
▶ m = ⌈

√
n⌉

▶ Sturges’s formula:
□ assume m bins: 0, 1, . . . ,m − 1
□ assume normal distribution of true density
□ approximate normal density as Bin(n, 0.5), hence absolute frequency of i th bin is

(
m−1

i

)
□ total frequency is n =

∑m−1
i=0

(
m−1

i

)
= 2m−1, hence m = ⌈log2 n⌉+ 1

N.B. R’s hist method take bin width as a suggestion, then it rounds bins differently
See R script
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https://en.wikipedia.org/wiki/Histogram#Number_of_bins_and_width


d.f.: Kernels

• Problem with histograms: as m increases, histograms become unusable
• Idea: estimate density function by putting a pile (of sand) around each observation
• Kernels state the shape of the pile

▶ Epanechnikov 3
4 (1− t2) for −1 ≤ t ≤ 1

▶ Triweight 35
32 (1− t2)3 for −1 ≤ t ≤ 1

▶ Normal 1√
2π
e−

1
2 t

2

for −∞ < t < ∞
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Kernel density estimation (KDE)
A Kernel is a function K : R → R such that

• K is a probability density, i.e., K (t) ≥ 0 and
∫∞
−∞ K (t)dt = 1

• K is symmetric, i.e., K (−t) = K (t)

• [sometime, it is required that] K (t) = 0 for |t| > 1, i.e., support is [−1, 1]

A bandwidth h is a scaling factor over the support of K from [−1, 1] to [−h, h]

• h controls for how the probability density extends around 0

• if X ∼ K (t), then hX ∼ 1
hK ( th ) [Change-of-units transformation, see Lesson 09]
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Kernel density estimation (KDE)

Let x1, . . . , xn be the observations

• if X ∼ K , then hX + xi ∼ 1
hK ( t−xi

h ) [Change-of-units transformation, see Lesson 09]

• K scaled and shifted at xi , with support [xi − h, xi + h]

The kernel density estimate is defined as the mixture of scaled and shifted kernel densities:

fn,h(t) =
1

nh

n∑
i=1

K (
t − xi
h

)

• It is a probability density function! [Prove it!]
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Histograms vs KDE

• KDE has less variability than histograms!
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Choice of the bandwidth

• Note. The choice of the kernel is not critical: different kernels give similar results

• A problem. The choice of the bandwith h is critical (and it may depend on the kernel)

• Mean Integrated Squared Error (MISE) is

E [

∫ ∞

−∞
(fn,h(t)− f (t))2dt] =

∫ ∫ ∞

−∞
(fn,h(t)− f (t))2f (x1) . . . f (xn)dtdx1 . . . dxn

where f (t) is the true density function and observations are independent

• For f (t) being the Normal density, the MISE is minimized for

h = (
4

3
)
1
5 · s · n−

1
5 [normal reference method]

See R script
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Kernel density estimation (KDE)

• A problem. The choice of the bandwith h is critical (and it may depend on the kernel)
• Automatic selection of h

▶ Plug-in selectors (iterative bandwith selection)
▶ Cross-validation selectors (part of data for estimation and part for evaluation)

• Another problem. When the support is finite, symmetric kernels give meaningless results
• Boundary kernels

▶ Kernel (truncation) and renormalization
▶ Linear (combination) kernel
▶ Beta boundary kernels
▶ Reflective kernels (density=0 at boundaries)

• See [Scott, 2015] for a complete book on KDE

See R script
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Optional reference

David W. Scott (2015)

Multivariate density estimation: Theory, practice, and visualization.

John Wiley & Sons, Inc.
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