#### Master Program in Data Science and Business Informatics

### Statistics for Data Science

Lesson 30 - Classifier performances in R

### Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

## Tests and confidence intervals for classifier performance

#### The Caret package

```
1 Define sets of model parameter values to evaluate
2 for each parameter set do
      for each resampling iteration do
         Hold-out specific samples
 4
          [Optional] Pre-process the data
5
         Fit the model on the remainder
6
         Predict the hold-out samples
      end
8
      Calculate the average performance across hold—out predictions
9
10 end
11 Determine the optimal parameter set
12 Fit the final model to all the training data using the optimal parameter set
```

For resampling methods, see Lesson 28

See R script

## Binary classifier performance metrics

#### **Confusion matrix** (in R packages, it is transposed)

|                  |                                                | Predicted condition                                                                     |                                                                    |                                                                                                                           |                                                                                           |
|------------------|------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                  | Total population<br>= P + N                    | Positive (PP)                                                                           | Negative (PN)                                                      | Informedness, bookmaker informedness (BM) = TPR + TNR - 1                                                                 | Prevalence threshold (PT) = √TPR×FPR - FPR TPR - FPR                                      |
| Actual condition | Positive (P)                                   | True positive (TP),<br>hit                                                              | False negative (FN),<br>type II error, miss,<br>underestimation    | True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1 - FNR$ | False negative rate (FNR),<br>miss rate $= \frac{FN}{P} = 1 - TPR$                        |
|                  | Negative (N)                                   | False positive (FP),<br>type I error, false alarm,<br>overestimation                    | True negative (TN),<br>correct rejection                           | False positive rate (FPR),<br>probability of false alarm, fall-out<br>$= \frac{FP}{N} = 1 - TNR$                          | True negative rate (TNR),<br>specificity (SPC), selectivity<br>= $\frac{TN}{N}$ = 1 - FPR |
|                  | Prevalence $= \frac{P}{P+N}$                   | Positive predictive value (PPV),  precision  = TP/PP = 1 - FDR                          | False omission rate (FOR) $= \frac{FN}{PN} = 1 - NPV$              | Positive likelihood ratio (LR+) = TPR FPR                                                                                 | Negative likelihood ratio (LR-) $= \frac{ENR}{TNR}$                                       |
|                  | Accuracy (ACC) $= \frac{TP + TN}{P + N}$       | False discovery rate (FDR) $= \frac{FP}{PP} = 1 - PPV$                                  | Negative predictive value $(NPV) = \frac{TN}{PN} = 1 - FOR$        | Markedness (MK), deltaP (Δp)<br>= PPV + NPV - 1                                                                           | Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$                                           |
|                  | Balanced accuracy $(BA) = \frac{TPR + TNR}{2}$ | $F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$ | Fowlkes–Mallows index (FM) = $\sqrt{\text{PPV} \times \text{TPR}}$ | Matthews correlation coefficient (MCC) = √TPR×TNR×PPV×NPV - √FNR×FPR×FOR×FDR                                              | Threat score (TS), critical success index (CSI), Jaccard index = TP TP + FN + FP          |

Metrics computed on a test set are intended to estimate some parameter over the general distribution.

- $X = (W, C) \sim F$ , i.e., F is the (unknown) multivariate distribution of predictive features and class
- Accuracy ACC of a classifier  $y_{\theta}^+$  is a point estimate of  $E_F[\mathbb{1}_{y_{\theta}^+(W)=C}] = P_F(y_{\theta}^+(W)=C)$

# Probabilistic binary classifier performance metrics



- Binary classifier score  $s_{\theta}(w) \in [0,1]$  where  $s_{\theta}(w)$  estimates  $\eta(w) = P_{\theta_{TRUE}}(C=1|W=w)$
- ROC Curve

[Cfr. also Lesson 16]

- ►  $TPR(p) = P(s_{\theta}(w) \ge p|C = 1)$  and  $FPR(p) = P(s_{\theta}(w)|C = 0)$
- ▶ ROC Curve is the scatter plot TPR(p) over FPR(p) for p ranging from 1 down to 0
- AUC-ROC is the area below the curve

What does AUC-ROC estimate?

- Squared error loss or  $L_2$  loss or Brier score:  $\frac{1}{n} \sum_i (s_{\theta}(w_i) c_i)^2$
- Classifier is calibrated if  $P(C = 1 | s_{\theta}(w) = p) = p$  classifier-calibration.github.io
  - ▶ Binary Expected Calibration Error (binary-ECE):  $\sum_b \frac{|B_b|}{n} |Y_b S_b|$ □  $B_b$  is the set of i's in the  $b^{th}$  bin,  $Y_b = |\{i| \ i \in B_b, c_i = 1\}|/|B_b|$ ,  $S_b = (\sum_{i \in B_b} s_\theta(w_i))/|B_b|$