Master Program in Data Science and Business Informatics

Statistics for Data Science

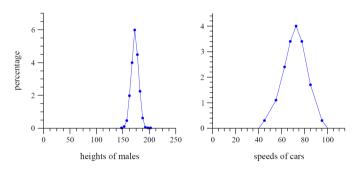
Lesson 13 - Power laws and Zipf's law

Salvatore Ruggieri

Department of Computer Science University of Pisa, Italy salvatore.ruggieri@unipi.it

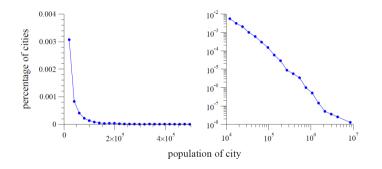
Scaled distributions

Many of the things that scientists measure have a typical size or "scale" — a typical value around which individual measurements are centered



Scale-free distributions

 But not all things we measure are peaked around a typical value. Some vary over an enormous dynamic range.



Look at Figure 4 of Newman's paper

Continuous power-law

Power-law

A continuous random variable X has the *power-law distribution*, if for some $\alpha>1$ its density function is given by

$$p(x) = C \cdot x^{-\alpha}$$
 for $x \ge x_{min}$

We denote this distribution by $Pow(x_{min}, \alpha)$.

- C is called the **intercept**, and α the **exponent**.
- Passing to the logs:

$$\log p(x) = -\alpha \cdot \log(x) + \log C$$

linearity in log-log scale plots!

Scale-free distributions

$$p(bx) = g(b)p(x)$$

- Measuring in cm, inches, Km, or miles does not change the form of the distribution (up to some constant)!
- For a power-law $p(x) = Cx^{-\alpha}$

$$p(bx) = b^{-\alpha} Cx^{-\alpha}$$

hence, $g(b) = b^{-\alpha}$

- Actually, power-laws are the only scale-free distributions!
 - ► see Eq. 30-34 of **Newman's paper** for a proof

Intercept

What is the constant C?

$$1 = \int_{x_{min}}^{\infty} C \cdot x^{-\alpha} dx = \frac{C}{-\alpha + 1} \left[x^{-\alpha + 1} \right]_{x_{min}}^{\infty} \stackrel{(\star)}{=} \frac{C}{-\alpha + 1} \left(0 - x_{min}^{-\alpha + 1} \right) = \frac{C}{\alpha - 1} x_{min}^{-\alpha + 1}$$

(\star) Finite only for $\alpha > 1$, because:

$$\lim_{x \to \infty} x^{-\alpha+1} = \infty \text{ for } \alpha \le 1$$

• Therefore:

$$C = (\alpha - 1)/x_{min}^{-\alpha + 1} \tag{1}$$

and, in summary:

$$p(x) = \frac{(\alpha - 1)}{x_{min}} \left(\frac{x}{x_{min}}\right)^{-\alpha}$$

CCDF

• Let's compute:

$$P(X > x) = \int_{x}^{\infty} p(y)dy = C \int_{x}^{\infty} y^{-\alpha}dy = \frac{C}{-\alpha + 1} \left[y^{-\alpha + 1} \right]_{x}^{\infty} = \frac{C}{\alpha - 1} x^{-\alpha + 1}$$

and since $C = (\alpha - 1)/x_{min}^{-\alpha + 1}$:

$$P(X > x) = \left(\frac{x}{x_{min}}\right)^{-\alpha+1} = \left(\frac{x}{x_{min}}\right)^{-(\alpha-1)}$$

• Same form as df (see Eq. 1) but with exponent $(\alpha - 1)$

Pareto distribution

- Vilfredo Pareto noticed that the number of people whose income exceeded level x (i.e., CCDF) was well approximated by C/x^{β} for some constants C and $\beta > 0$
 - ▶ It appears that for all countries $\beta \approx 1.5$.

Pareto distribution

A continuous random variable X has the $Pareto\ distribution$, if for some $\beta>0$ its density function is given by

$$p(x) = C \cdot x^{-(\beta+1)}$$
 for $x \ge x_{min}$

We denote this distribution by $Par(x_{min}, \beta)$.

- $Par(x_{min}, \beta) = Pow(x_{min}, \beta + 1)$ or $Pow(x_{min}, \alpha) = Par(x_{min}, \alpha 1)$
- CCDF of $Par(x_{min}, \beta)$ is $(\frac{x}{x_{min}})^{-((\beta+1)-1)} = (\frac{x}{x_{min}})^{-\beta}$

Expectation and variance of a power-law

• What is the expectation of $X \sim Pow(x_{min}, \alpha)$?

$$E[X] = \int_{x_{min}}^{\infty} x \cdot p(x) dx = C \int_{x_{min}}^{\infty} x^{-\alpha+1} dx = \frac{C}{-\alpha+2} \left[x^{-\alpha+2} \right]_{x_{min}}^{\infty} \stackrel{\text{(*)}}{=} \frac{C}{\alpha-2} x_{min}^{-\alpha+2}$$

(*) Finite only for $\alpha > 2$, because:

$$\lim_{x \to \infty} x^{-\alpha+2} = \infty \text{ for } \alpha \le 2$$

and since $C = (\alpha - 1)/x_{min}^{-\alpha+1}$:

$$E[X] = \frac{\alpha - 1}{\alpha - 2} x_{min}$$

- ▶ For $1 < \alpha \le 2$, there is no expectation: the mean of a dataset has no reliable value!
- Var(X) finite only for $\alpha > 3$
 - lacktriangle For 2 $< lpha \le$ 3, there is no variance: the empirical variance of a dataset has no reliable value!

Discrete power-law

Discrete power-law

A discrete random variable X has the *power-law distribution*, if for some $\alpha>1$ its p.m.f. function is given by

$$p(k) = C \cdot k^{-\alpha}$$
 for $k = k_{min}, k_{min} + 1, ...$

We denote this distribution by $Pow(k_{min}, \alpha)$.

- Population of cities, number of books sold, number of citations, etc.
- Since $1 = \sum_{k=k,\ldots,n}^{\infty} C \cdot k^{-\alpha}$, we have

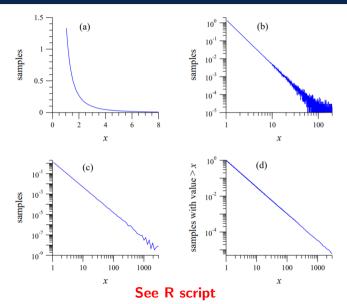
$$C = \frac{1}{\sum_{k=k_{min}}^{\infty} k^{-\alpha}} = \frac{1}{\zeta(\alpha, k_{min})}$$

where
$$\zeta(\alpha, k_{min}) = \sum_{k=k_{min}}^{\infty} k^{-\alpha}$$

• Special case: $\zeta(\alpha) = \zeta(\alpha, 1) = \sum_{k=1}^{\infty} k^{-\alpha}$

[Hurwitz zeta-function] [Riemann zeta-function]

Logarithmic binning vs CCDF



Zipf's law

Zipf's law distribution

A discrete random variable R has the Zipf's law distribution, if for some $\alpha>1$ its p.m.f. function is given by

$$p(r) = C \cdot r^{-\alpha}$$
 for $r = 1, 2, \dots, N$

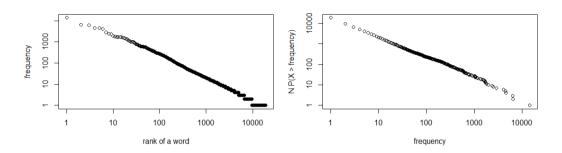
We denote this distribution by $Zipf(\alpha)$.

• Since $\sum_{r=1}^{N} C \cdot r^{-\alpha} = 1$:

$$C = \frac{1}{\sum_{r=1}^{N} r^{-\alpha}} = \frac{1}{\zeta(\alpha) - \zeta(\alpha, N+1)}$$

- Read p(r) as the probability of an event based its rank
 - ▶ e.g., prob. of occurrence of a word in a book given the word rank, prob. of occurrence of an inhabitant of a city given the city rank
 - Contrast to discrete power laws: prob. of words with a given number of occurrences, prob. of cities with a given number of inhabitants
 - ▶ If V the total number of words/inhabitants, $V \cdot p(r)$ is the frequency/population of the word/city of rank r. Alternatively, if v is the population of the city p(r) = v/v

Zipf's law



Left: (rank-frequency plot) frequency of words based on rank **Right**: number of words with a given minimum frequency

[Zipf's law]
[CCDF of a Power-law]

From power-law to Zipf's law and vice-versa

- $\Omega = \{\omega_1, \dots, \omega_N\}$, ω_i is a city with n_i inhabitants, for a total of N cities and $V = \sum_{i=1}^N n_i$ inhab.
- $P_1(\omega_i) = 1/N$ and $X(\omega_i) = n_i$ is the population of the city ω_i
 - e.g., $X(\omega_{Tokyo}) = 37,435,191$ for the city of **Tokyo** (world most populated city)
- $p_X(k) = P_X(X = k) = P_1(\{\omega \in \Omega \mid X(\omega) = k\}) = \text{fraction of cities with } k \text{ inhabitants}$
- $P_2(\omega_i) = n_i/V$ and $R(\omega_i) = \text{rank of the city } \omega_i \text{ w.r.t. city population}$
 - lacktriangledown e.g., $R(\omega_{Tokyo})=1$ for the city of Tokyo
 - $ho_R(r) = P_R(R = r) = X(\omega_{r-th})/V$ where ω_{r-th} is the r^{th} largest city
- Assume $X \sim Pow(x_{min}, \alpha)$, where x_{min} is the smallest population of a city, e.g., $x_{min} = 1$
 - ▶ $P(X > k) \propto k^{-(\alpha-1)}$, (prop. to the) <u>fraction</u> of cities with more than k inhabitants $[\propto reads "proportional to" up to multip./additive constants]$
 - ▶ $N \cdot k^{-(\alpha-1)}$, (prop. to the) <u>number</u> of cities with more than k inhabitants ▶ if $X(\omega) = k$ then $R(\omega) \propto N \cdot X(\omega)^{-(\alpha-1)} + 1$, where +1 to add ω itself
 - In summary $R(\omega) \propto X(\omega)^{-(\alpha-1)}$, or, by inverting, $X(\omega) \propto R(\omega)^{-\frac{1}{\alpha-1}}$, and then: $p_R(r) = P_R(R=r) = \frac{X(\omega_{r-th})}{V} \propto X(\omega_{r-th}) \propto r^{-\beta}$ where $\beta = \frac{1}{\alpha-1}$

$$V$$
 $\alpha-1$

i.e., $R \sim Zipf(\beta)$ (the r^{th} most populated city has population proportional to $r^{-\beta}$)

See R script