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Example: number of German tanks

® Tanks' ID drawn at random without replacement from 1,...  N. Objective: estimate N.
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Example: number of German tanks

® let xq,...,Xp be the observed ID’s
® Eg,h61,19,56,24,16 with n=5
® They are realizations of Xi, ..., X, draws without replacement from 1,..., N

» Xi,...,X, is not a random sample, as they are not independent!

» The marginal distribution is X; ~ U(1, N) [prove it, or see Sect. 9.3 of [T]]
e Estimator based on the mean

» Since:

EI%] = E[X] = "0t

we can define an estimator:
T =2X,—-1

» T; is unbiased: _
E[T] =2E[X,]—-1=N

» Eg., t; =2(61+19+56+24+16)/5 — 1 = 69.4
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Example: number of German tanks

® |et xy,...,X, be the observed ID's
® F g, 61,19,56,24,16 with n=5
e Estimator based on the maximum
» Let M, = max{Xy,..., X}
» Since: [see Sect. 20.1 of [T]]
N+1

E[M"]:nn+l

we can define an estimator: +1
n
T, = M, -1
n

» T, is also unbiased:

E[T,] = ”:: Lem]—1=n
» Eg., tp =6/5max{61,19,56,24,16} — 1 =722
See R script
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Estimators

® So far, estimators were derived from parameter definition through the plug-in method
® A general principle to derive estimators will be shown today

® Example

Table 21.1. Observed numbers of cycles up to pregnancy.

Number of cycles 1 2 3 4 5 6 7 8 9 10 11 12 >12
Smokers 29 16 17 4 3 9 4 5 1 1 1 3 7
Nonsmokers 198 107 55 38 18 22 7 9 5 3 6 6 12

Assume that the data is generated from geometric distributions:
P(Xi = k)= (1—p)<'p
where p is distinct for smokers and non smokers.
® What is an estimator for p? [parametric inference]

» E.g., since p= P(X; =1), we could use S = M and show E[S] =p
» p=29/100 for smokers, and p = 198/486 = 0.41 for non-smokers

» But we did not use all of the available data! 5/17



The maximum likelihood principle

The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data are most likely.

Table 21.1. Observed numbers of cycles up to pregnancy.

Number of cycles 1 2 3 4 5 6 7 8 9 10 11 12 >12

Smokers 20 16 17 4 3 9 1 1 3 7

4 5 1
Nonsmokers 198 107 55 38 18 22 7 9 5 3 6 6 12

® Fork=1,...,12, P(X; = k) = (1 — p)*~!p. Moreover, P(X; > 12) = (1 — p)*?
® Since the X;'s are independent, we can write the probability of observing the smokers as:
L(p) = C-P(X; = 1) P(X; =2)" ... P(X; = 12)*- P(X; > 12) = CpP(1 — p)**?

» C is the number of ways we can assign 29 ones, 16 twos, ..., 3 twelves, and 7 numbers
larger than 12 to 100 smokers

® ML principle: choose p = arg max, L(p)
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® ML principle: choose p = arg max, L(p) = arg max, Cp?3(1 — p)3??

* L'(p) = C(93p%(1 — p)*** — 322p*(1 — p)**!) = Cp**(1 — p)***(93 — 415p)
e ['(p)=0forp=0o0rp=1or p=93/415=10.224
® ML estimate is arg max, L(p) = 0.224 < 0.41 (estimate using S)

® Equivalent formulation for maximization:
arg max L(p) = arg maxlog L(p)
P P

® log L(p) =log C +93log p + 322log (1 — p)
* log'L(p) = T = %5
e log' L(p) = 0 for 322p = 93(1 — p), i.e.,, p=93/(322 + 93) = 0.224

See R script
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Likelihood and log-likelihood

Likelihood, log-likelihood, and MLE

Let xq, X, be a dataset, i.e., realizations of a random sample Xi, ..., X, where the
density/p.m.f of X;'s is fy(), parametric on 6. The likelihood function is:

0) = H fo (i)

and the log-likelihood function is:
£(6) = log L(# Z log f5(xi)

Maximum likelihood estimates

The maximum likelihood estimates of 0 is the value t = arg maxy L(6)
arg maxg £(0). The statistics over the random sample:

O = arg max L(f) = arg maaxf(ﬂ)

is called the maximum likelihood estimator for 6. ) ,
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Example: MLE of exponential distribution

® Random sample of Exp()\) E[X] =1/a
® Since f(x) = Ae™ for x > 0:

n

((A) = (log A = Axj) = nlog A = A(x1 + ... + x,) = n(log A — A%,)
i=1

I(N) = 0iff n(1/x—x,) =0 iff A = 1/x,
AmL = Y/X, is the MLE of X for a Exp()\)-distributed random sample
It is biased!: E[Ap] > 1/E[X,] = A [Jensen'’s inequality]
Exercise at home
» show that X, is an unbiased MLE of 6 for a Exp(1/60)-distributed random sample
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Example: upper point of a uniform distribution

® Dataset: x; = 0.98,x, = 1.57,x3 = 0.31 from U(0, ) for unknown 6 > 0
® fy(x) =1/6 for 0 < x < 6 and fy(x) = 0 otherwise

L0) = ) os) = {

0.2 4

if & > max{xq,x2,x3} = 1.57
otherwise

0.1+

0-

I T T T
0 031 0.98 1.57

® In general, MLE estimator is max{Xy, ..., Xy}
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Example: MLE of normal distribution

® Random sample of N(u,o?)
® MLE of § = (u,0?) where f, 52(x) = e 3(31) [we work on 2, not on o]
1
U(p,0%) = —nlogo — nlogv2m — 592 iz;(x; — u)?
® Partial derivatives:
n
ToH.0) = (=) o) = 5 <012 SRS )

Partial derivatives at 0 for 11 = X, and 02 =150 (xi — Xn)? [prove it is a maximum]
MLE estimators fip = X, (unbiased) and 62, = 15" (X; — X,)? (biased)
See R script
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Loss functions (to be minimized)

® Negative log-likelihood (nLL)
nLL(#) = —¢(0)

® How to compare estimators that use more parameters?
» T; assuming a Ber(p) vs T, assuming Bin(n, p)
» Neural network with 10 nodes vs with 100 nodes

® Akaike information criterion (AlIC), balances model fit against model simplicity
AIC(6) = 2]0] — 2¢(0)
® Bayesian information criterion (BIC), stronger balances over model simplicity
BIC(0) = |0|log n — 2¢£(0)
See R script
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Properties of MLE estimators

® MLE estimators can be biased, but under mild assumptions, they are asyntotically
unbiased! [Asyntotic unbiasedness|

lim E[0p] =6
n—oo

e If Opy is the MLE estimator of 6 and g() is an invertible function, then g(fay,) is the
MLE estimator of g(6) [Invariance principle]

» E.g., MLE of o for normal data is /2 37 (x; — i)?
» but, E[0y] = 6 does NOT necessarily imply E[g(0n1)] = g(b)

» See also Exercise at home

® Under mild assumptions, MLE estimators have asymptotically the smallest variance
among unbiased estimators [Asymptotic minimum variance|
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Score function and Fisher information

® Consider a density function fz(x)

Score function and Fisher information

The score function is the random variable:
d "9
= — = — log fy(X;

The Fisher information is the variance of it:
1(0) = Var(5(6))

v

® /(0) quantifies the sensitivity of X w.r.t. 6: if small changes in 0 result in large changes in the
density values (high variance of /(6)), then data easily provides information on the correct 6.

» Recall that H(X) = E[— log f(X)] is the entropy of X [see Lesson 09]
® For N(u,0?), we calculated: S(u) = L 0(n,0) = (X, — ). Hence:

n2 0’2 n

() = Var(S(p)) = % — =

o* n 02

Fisher information proportional to n and inversely proportional to ¢ 14/17
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Minimum Variance Unbiased Estimators (MVUE)
Score function and Fisher information

The score function is the random variable:

S(0) = 55000) = Y =5 108 ()

The Fisher information is the variance of it:
1(8) = Var(5(9))

v

Since E[S(0)] =0, I(0) = E[S(0)%] [prove it or see sdsin.pdf Chpt. 1]
* Since X;'s are i.i.d, I(0) = E[S(0)?] = nE[(Z; log f5(X))?] [prove it or see sds/n.pdf Chpt. 1]
® Cramér-Rao’s bound for unbiased estimator T (under some assumptions):

Var(T) > %

An unbiased estimator T such that Var(T) = 1/1(0) is a MVUE
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1ox—py2
eii( o )

* Normal distribution and p parameter: f,,(x) = ——

e Unbiased MLE estimator of i is fipy = X = (X1 + ...+ X,)/n.
® The Fisher information is:
n 1
I = — = —
W) =32 = Var(xy)

where the last equality follows because for i.i.d. random variables Var(X,) = o2/n.
By taking the reciprocals: Var(X,) = 1/1(u)
® Hence fip = X, is a MVUE of W
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Fisher information and MLE standard error

The standard deviation of the sampling distribution is called the standard error (se)
An MLE estimator §ML is asyntotically unbiased

An MLE estimator Gy has asymptotic minimum variance

By Cramér-Rao’s bound, asymptotically we have:

N ~ 1
se(6 =1/ Var(0 =
(Omr) = 1/ Var(Omr) 10

E.g., for the normal distribution and the MLE estimator fip; of u:
o

se(fimL) = 7

but because o is unknown, we plug-in its estimate &

se(fimL) = o
Vn
See R script
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