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Hypothesis testing

• We tested how likely is Exp() as data generation model for the software dataset

• Hypotheses testing consists of contrasting two conflicting hypotheses based on observed data

• Consider the German tank problem:

▶ Military intelligence states that N = 350 tanks were produced [H0 or null hypothesis]
▶ Alternative hypothesis: [H1 or alternative hypothesis]

N < 350 (one-tailed or one-sided test), or N ̸= 350 (two-tailed or two-sided test)
▶ Observed serial tank id’s: 61 19 56 24 16

• Statistical test: How likely is the observed data under the null hypothesis?

▶ If it is NOT (sufficiently) likely, we reject the null hypothesis in favor of H1
▶ If it is (sufficiently) likely, we cannot reject the null hypothesis

• Why ’we cannot reject the null hypothesis’ and not instead ’we accept the null hypothesis’?

▶ Other hypotheses, e.g., N = 349 or N = 351, could also be not rejected
▶ We cannot say which of N = 349 or N = 350 or N = 351 is actually true
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Test statistic

• In the German tank example: [See Lesson 19]
▶ H0 : N = 350
▶ H1 : N < 350
▶ Observed serial tank id’s: 61 19 56 24 16

• We use T = max {X1,X2,X3,X4,X5}
• If H0 is true, i.e., N = 350, then E [T ] = 5

6(N + 1) = 5
6351 = 292.5

• If H0 is true, we have:

P(T ≤ 61) = P(max {X1,X2,X3,X4,X5} ≤ 61) =
61

350
· 60

349
. . .

57

346
= 0.00014

very unlikely: either we are unfortunate, or H0 can be rejected 3 / 24



Statistical test of hypothesis: one-tailed
• H0: θ = v [Null hypothesis]
• H1: θ < v (resp. H1: θ > v) [Left-tailed/Right-tailed test]
• 100(1− α)%, e.g., 95% or 99% or 99.9% [Confidence level]

▶ i.e., α = 0.05 or α = 0.01 or α = 0.001 [Significance level]
• T = h(X1, . . . ,Xn) test statistics when H0 is true
• x1, . . . , xn: observed dataset, and t = h(x1, . . . , xn) [t-value]
• cl s.t. P(T ≤ cl) = α (resp. cu s.t. P(T ≥ cu) = α) [Critical values]
• Output of the test at confidence level 100(1− α)% using critical values

▶ t ≤ cl (resp. t ≥ cu): H0 is rejected [Critical region]
▶ otherwise: H0 cannot be rejected
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Statistical test of hypothesis: one-tailed
• H0: θ = v [Null hypothesis]
• H1: θ < v (resp. H1: θ > v) [Left-tailed/Right-tailed test]
• 100(1− α)%, e.g., 95% or 99% or 99.9% [Confidence level]

▶ i.e., α = 0.05 or α = 0.01 or α = 0.001 [Significance level]
• T = h(X1, . . . ,Xn) test statistics when H0 is true
• x1, . . . , xn: observed dataset, and t = h(x1, . . . , xn) [t-value]
• p = P(T ≤ t) (resp. p = P(T ≥ t)) [p-value]

▶ evidence against H0 - the smaller the stronger evidence
• Output of the test at confidence level 100(1− α)% using p-values

▶ p ≤ α: H0 is rejected
▶ otherwise: H0 cannot be rejected
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Statistical test of hypothesis: two-tailed
• H0: θ = v [Null hypothesis]
• H1: θ ̸= v [Two-tailed test]
• 100(1− α)%, e.g., 95% or 99% or 99.9% [Confidence level]

▶ i.e., α = 0.05 or α = 0.01 or α = 0.001 [Significance level]
• T = h(X1, . . . ,Xn) test statistics when H0 is true
• x1, . . . , xn: observed dataset, and t = h(x1, . . . , xn) [t-value]
• cl s.t. P(T ≤ cl) = α/2 and cu s.t. P(T ≥ cu) = α/2 [Critical values]
• Output of the test at confidence level 100(1− α)% using critical values

▶ t ≤ cl or t ≥ cu: H0 is rejected [Critical region]
▶ otherwise: H0 cannot be rejected
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Type I and Type II errors

• Type I error: we falsely reject H0 [α-risk, false positive rate]
▶ E.g., convicting an innocent defendant
▶ we reject H0 when p < α, so this error occur with probability 100α%
▶ this error can be controlled by setting the significance level α to the largest acceptable value
▶ how much is an acceptable value?
▶ A possible solution is to solely report the p-value, which conveys the maximum amount of

information and permits decision makers to choose their own level
• Type II error: we falsely do not reject H0 [β-risk, false negative rate]

▶ E.g., acquitting a criminal
▶ 1− β = P(Reject H0|H1 is true) is called the power of the test
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Example: speed limit

• Speed limit: 120 Km/h

• A device conduts 3 measurements: X1,X2,X3 ∼ N(µ, 4) (true speed + measur. error)
• Based on T = X̄3 = (X1 + X2 + X3)/3 ∼ N(µ, 4/3):

▶ if T > cu the driver is fined
▶ otherwise it is not

• What should cu be to unjustly fine only 5% of drivers? [Type I error]
• One-tailed statistical test

▶ H0: µ = 120 (null hypothesis)
▶ H1: µ > 120 (alternative hypothesis)
▶ α = 0.05 (significance level), or 100(1− α)%= 95% (confidence level)
▶ T = X̄3 (test statistics)

• Assuming H0 is true, find t such that P(T ≥ cu) = 0.05
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Example: speed limit

• X1,X2,X3 ∼ N(µ, 4) and then T = X̄3 ∼ N(µ, 4/3)

• Z = T−120
2/

√
3

∼ N(0, 1)

• P(T ≥ cu) = P(T3−120
2/

√
3

≥ cu−120
2/

√
3
) = P(Z ≥ cu−120

2/
√
3
)

• Right critical value: P(Z ≥ zα) = α

• Hence cu−120
2/

√
3

= z0.05, i.e., cu = 120 + z0.05
2√
3
= 121.9

• In summary, for α = 0.05 we should reject H0 : µ = 120 in favor of H1 : µ > 120 if the
observed (average) speed t is t ≥ 121.9
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Critical values and p-values

• Critical region K : the set of values that reject H0 in favor of H1 at significance level α
• Critical values: values on the boundary of the critical region
• p-value: the probability of obtaining test results at least as extreme as the results actually
observed, under the assumption that H0 is true

• t ∈ K iff p-value ≤ α
10 / 24



Type I and Type II errors

• Type I error: we falsely reject H0 [α-risk, false positive rate]
▶ E.g., unjust fine
▶ Type I error is equal to α

• Type II error: we falsely do not reject H0 [β-risk, false negative rate]
▶ E.g., lack of a true fine
▶ How large is type II error?
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Type II error

• Type II error: probability of not being fined when µ > 120 but t < 121.9
• Assume µ = 125, hence T = X̄3 ∼ N(125, 4/3)

▶ Type II error is P(T < 121.9|µ = 125) = P(T−125
2/

√
3

< 121.9−125
2/

√
3

) = Φ(−2.68) = 0.0036

• Assume µ = 123, hence T = X̄3 ∼ N(123, 4/3)
▶ Type II error is P(T < 121.9|µ = 123) = P(T−123

2/
√
3

< 121.9−123
2/

√
3

) = Φ(−0.95) = 0.1711

• Type II error can be arbitrarily close to 1− α
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Relation with confidence intervals

• H0: µ = 120 (null hypothesis)
• H1: µ > 120 (alternative hypothesis)
• α = 0.05 (significance level)
• cu = 120 + z0.05

2√
3
= 121.9

• H0 rejected with when:

t = x̄3 ≥ cu

⇔ x̄3 ≥ 120 + z0.05
2√
3

⇔ 120 ≤ x̄3 − z0.05
2√
3

⇔ 120 is not in the 95% one-tailed c.i. for µ

because (x̄3 − z0.05
2√
3
,∞) is a one-tailed c.i. for µ
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Statistical tests for the mean

• H0 : µ = µ0

• H1 : µ ̸= µ0 (or H1 : µ > µ0, or H1 : µ < µ0)
• Normal data

▶ with known variance: Z = X̄n−µ0

σ/
√
n

[z-test]

▶ with unknown variance: T = X̄n−µ0

Sn/
√
n

[t-test]

• General data (with unknown variance)

▶ large sample, i.e., large n, T = X̄n−µ0

Sn/
√
n

[t-test]

▶ symmetric distribution [Wilcoxon test]
▶ bootstrap t-test
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Normal data with known σ2: z-test

• X1, . . . ,Xn ∼ N(µ, σ2)

• H0 : µ = µ0

• H1 : µ ̸= µ0 [Two-tailed test]
• 100(1− α)%, e.g., 95% or 99% or 99.9% [Confidence level]

▶ i.e., α = 0.05 or α = 0.01 or α = 0.001 [Significance level]

• Z = X̄n−µ0

σ/
√
n
∼ N(0, 1) test statistics when H0 is true

• x1, . . . , xn: observed dataset, and z value is x̄n−µ0

σ/
√
n

• P(Z ≤ −zα/2) = α/2 and P(Z ≥ zα/2) = α/2 [Critical values]

• Output of the test at confidence level 100(1− α)% using critical values
▶ |z | ≥ zα/2: H0 is rejected [Critical region]
▶ otherwise: H0 cannot be rejected

See R script
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Normal data with unknown σ2: t-test

• X1, . . . ,Xn ∼ N(µ, σ2)

• H0 : µ = µ0

• H1 : µ ̸= µ0 [Two-tailed test]
• 100(1− α)%, e.g., 95% or 99% or 99.9% [Confidence level]

▶ i.e., α = 0.05 or α = 0.01 or α = 0.001 [Significance level]

• T = X̄n−µ0

Sn/
√
n
∼ t(n − 1) test statistics when H0 is true [recall S2

n = 1
n−1

∑n
i=1(Xi − X̄ )2]

• x1, . . . , xn: observed dataset, and t value is x̄n−µ0

sn/
√
n

• P(T ≤ −tα/2,n−1) = α/2 and P(T ≥ tα/2,n−1) = α/2 [Critical values]

• Output of the test at confidence level 100(1− α)% using critical values
▶ |t| ≥ tα/2,n−1: H0 is rejected [Critical region]
▶ otherwise: H0 cannot be rejected

See R script
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General data, large sample: t-test

• T = X̄n−µ0

Sn/
√
n
→ N(0, 1) for n → ∞ [Variant of CLT]

• We can use z-test with σ2 = S2
n

• Or, since t(n) → N(0, 1) for n → ∞, we can use t-test directly!

See R script
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General data, symmetric distribution: Wilcoxon signed-rank test

• X1, . . . ,Xn ∼ F with f (µ− x) = f (µ+ x)

• H0 : µ = 67

• H1 : µ ̸= 67

• W = min {
∑

rank+,
∑

rank−}, with ranking w.r.t. |xi − µ0|

x 71 79 40 70 82 72 60 76 69 75
x − µ0 4 12 -27 3 15 5 -7 9 2 8
rank 3 8 10 2 9 4 5 7 1 6

rank+ 3 8 2 9 4 7 1 6

rank− 10 5

• w = min {40, 15} = 15

• Ignore cases where |xi − µ0| = 0. If the values have ties, then consider the mean value

• Normal approximation for n > 50

• Exact test for n ≤ 50 [on the null distribution]

• In general, a statistical test of the median!

See R script
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General data: bootstrap test (see Lesson 27)

boot.ci method in R confidence intervals:
• type=‘stud’: (x̄n − q1−α/2

sn√
n
, x̄n − qα/2

sn√
n
) with quantiles over the distribution of t∗

• t0 =
x̄n−µ0

sn/
√
n

r number of repetitions

• one-sided p-value, i.e., P(T ≥ t0), estimated as |{i = 1, . . . , r | t∗i ≥ t0}|/r
• two-sided p-value, i.e., P(|T | ≥ |t0|), estimated as |{i = 1, . . . , r | |t∗i | ≥ |t0|}|/r

See R script
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Hypothesis testing for a proportion: the binomial test
• Dataset x1, . . . , xn realization of X1, . . . ,Xn ∼ Ber(θ)
• H0 : θ = θ0 H1 : θ ̸= θ0
• Test statistics: B =

∑n
i=1 Xi ∼ Bin(n, θ0) [Asymmetric distribution]

• b-value is
∑n

i=1 xi
• Critical values (exact test):

P(B ≤ l) =
l∑

i=0

(
n

i

)
θi0(1− θ0)

n−1 = P(B ≥ u) =
n∑

i=u

(
n

i

)
θi0(1− θ0)

n−i = α/2

• Normal approximation Bin(n, θ0) ≈ N(nθ0, nθ0(1− θ0))
▶ scaled test statistics:

B⋆ =
B − nθ0√
nθ0(1− θ0)

∼ N(0, 1)

▶ use z-test with σ2 = θ0(1− θ0) because B⋆ = B/n−θ0√
θ0(1−θ0)/

√
n
= X̄n−θ0

σ/
√
n

▶ or even t-test for large samples

See R script
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Hypothesis testing in linear regression

• Simple linear regression: Yi = α+ βxi + Ui with Ui ∼ N (0, σ2)

• We have β̂ ∼ N (β,Var(β̂)) where Var(β̂) = σ2/SXX is unknown [see Lesson 20]

• The studentized statistics is t(n − 2)-distributed: [proof omitted]

T =
β̂ − β√
Var(β̂)

∼ t(n − 2)

• H0 : β = 0 H1 : β ̸= 0

• p-value is p = P(|T | > |t|) = 2 · P(T >
∣∣∣ β̂−0

se(β̂)

∣∣∣)
• H0 can be rejected in favor of H1 at α = 0.05, if p < 0.05, or, equivalently, if

|t| > tn−2,0.025.

• A similar approach applies to the intercept.

See R script
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Misues of p-values

Misinterpretations of p-values, [Greenland et al, 2016]

• The p-value is the probability that the null hypothesis is true, or the probability that the
alternative hypothesis is false. A p-value indicates the degree of compatibility between a
dataset and a particular hypothetical explanation

• The 0.05 significance level is the one to be used: No, it is merely a convention. There is
no reason to consider results on opposite sides of any threshold as qualitatively different.

• A large p-value is evidence in favor of the test hypothesis: A p-value cannot be said to
favor the test hypothesis except in relation to those hypotheses with smaller p-values

• If you reject the test hypothesis because p ≤ 0.05, the chance you are in error is 5%: No,
the chance is either 100% or 0%. The 5% refers only to how often you would reject it,
and therefore be in error.
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s-values

• Shannon information value or surprisal value (s-value) is − log2 p (unit: bit)
▶ p = 0.5 ⇒ s = 1 surprising as getting one heads on 1 fair coin toss
▶ p = 0.10 ⇒ s = 3.32 surprising as getting all heads on 3 fair coin tosses
▶ p = 0.0001 ⇒ s = 13.29 surprising as getting all heads on 13 fair coin tosses

23 / 24



Optional references

• On confidence intervals and statistical tests (with R code)

Myles Hollander, Douglas A. Wolfe, and Eric Chicken (2014)

Nonparametric Statistical Methods.

3rd edition, John Wiley & Sons, Inc.

• On p-values

Sander Greenland, Stephen J. Senn, Kenneth J. Rothman, John B. Carlin, Charles Poole, Steven N.
Goodman, and Douglas G. Altman (2016)

Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.

European Journal of Epidemiology 31, pages 337–350
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