
0.1 Sample correlation

Consider two Gaussian random variables x and y distributed with the density
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where mx and my are the expected values of x and y, respectively, σx and σy their standard deviations and
ρ is the correlation coefficient between x and y. Now the statistics of a sample of N independent couples
(xi, yi) extracted from the density of Eq. (1) are
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Fisher found the density function of the vector (m̂x, m̂y, σ̂x, σ̂y, ρ̂) describing the sample statistics of N
variables. The density factorizes in the joint pdf u(m̂x, m̂y) for the sample means and the joint pdf v(σ̂x, σ̂y, ρ̂)
for the elements of the covariance matrix. After integrating v over the two standard deviations one finally
obtains the density for the sample correlation coefficient
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This integral cannot be computed analytically but the table for the distribution of ρ̂ as a function of N and
ρ are given in many books for hypothesis testing. From Eq. (5) one can compute the approximate value of
the mean and the variance of ρ̂ which are
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Unfortunately these expressions are valid only when N is large (say of the order of 500) and this is because
the distribution for ρ̂ is highly asymmetric.

Fisher discovered also that the random variable
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has, even for small N , approximately the normal distribution
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This result shows that (i) the mean sample correlation coefficient tends to overestimate the correlation
coefficient, even if this bias decreases as N−1, and (ii) the uncertainty on the sample correlation coefficient
decreases as 1/

√
N as usual for other statistical samples (e.g. the mean).
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