1 Least Square Estimators in Simple Linear Regression

Consider the least square estimators:

$$\hat{\alpha} = \bar{Y}_n - \hat{\beta}\bar{x}_n \qquad \qquad \hat{\beta} = \frac{\sum_{i=1}^n (x_i - \bar{x}_n)(Y_i - \bar{Y}_n)}{SXX} \tag{1}$$

where $SXX = \sum_{1}^{n} (x_i - \bar{x}_n)^2$. Since $\sum_{1}^{n} (x_i - \bar{x}_n) = 0$, we can rewrite $\hat{\beta}$ as:

$$\hat{\beta} = \frac{\sum_{1}^{n} (x_i - \bar{x}_n) Y_i - \sum_{1}^{n} (x_i - \bar{x}_n) \bar{Y}_n}{SXX} = \frac{\sum_{1}^{n} (x_i - \bar{x}_n) Y_i}{SXX}$$
(2)

1.1 Expectation

 $\hat{\beta}$ is an unbiased estimator:

$$E[\hat{\beta}] = \frac{\sum_{1}^{n} (x_{i} - \bar{x}_{n}) E[Y_{i}]}{SXX}$$
$$= \frac{\sum_{1}^{n} (x_{i} - \bar{x}_{n}) (\alpha + \beta x_{i})}{SXX}$$
$$= \frac{\beta \sum_{1}^{n} (x_{i} - \bar{x}_{n}) x_{i}}{SXX} = \beta$$

where the last step follows since $\sum_{1}^{n} (x_i - \bar{x}_n) x_i = \sum_{1}^{n} (x_i - \bar{x}_n) x_i - \sum_{1}^{n} (x_i - \bar{x}_n) \bar{x} = SXX$. See the textbook [1, page 331] for a proof that $\hat{\alpha}$ is also unbiased, and [1, Exercise 22.12] for a different proof for $\hat{\beta}$.

1.2 Variance and Standard Errors of the Coefficients

We calculate:

$$Var(\hat{\beta}) = \frac{\sum_{1}^{n} (x_i - \bar{x}_n)^2 Var(Y_i)}{SXX^2} = \sigma^2 \frac{\sum_{1}^{n} (x_i - \bar{x}_n)^2}{SXX^2} = \frac{\sigma^2}{SXX}$$
(3)

and:

$$Var(\hat{\alpha}) = Var(\bar{Y}_n - \hat{\beta}\bar{x}_n)$$

= $Var(\bar{Y}_n) + \bar{x}_n^2 Var(\hat{\beta}) - 2\bar{x}_n Cov(\bar{Y}_n, \hat{\beta})$
= $\frac{\sigma^2}{n} + \bar{x}_n^2 \frac{\sigma^2}{SXX} - 0 = \sigma^2(\frac{1}{n} + \frac{\bar{x}_n^2}{SXX})$ (4)

The covariance in the formula is zero because (recall that Y_1, \ldots, Y_n are independent):

$$Cov(\bar{Y}_{n}, \hat{\beta}) = Cov(\frac{1}{n} \sum_{1}^{n} Y_{i}, \frac{\sum_{1}^{n} (x_{i} - \bar{x}_{n}) Y_{i}}{SXX})$$

$$= \frac{1}{nSXX} Cov(\sum_{1}^{n} Y_{i}, \sum_{1}^{n} (x_{i} - \bar{x}_{n}) Y_{i})$$

$$= \frac{1}{nSXX} \sum_{1}^{n} Cov(Y_{i}, (x_{i} - \bar{x}_{n}) Y_{i})$$

$$= \frac{1}{nSXX} \sum_{1}^{n} (x_{i} - \bar{x}_{n}) Var(Y_{i}) = \frac{\sigma^{2}}{n} \frac{\sum_{1}^{n} (x_{i} - \bar{x}_{n})}{SXX} = 0$$

The *standard errors* of the coefficient estimators are defined as the estimates of the standard deviations (see (3) and (4)):

$$se(\hat{\alpha}) = \hat{\sigma}\sqrt{\left(\frac{1}{n} + \frac{\bar{x}_n^2}{SXX}\right)} \qquad \qquad se(\hat{\beta}) = \frac{\hat{\sigma}}{\sqrt{SXX}} \tag{5}$$

where:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$$

is the estimate of σ^2 (see [1, page 332]).

1.3 Variance and Standard Errors of Fitted Values

For a given value of the explanatory variable, say x_0 , the estimator $\hat{y} = \hat{\alpha} + \hat{\beta}x_0$ has expectation $E[\hat{Y}] = \alpha + \beta x_0$. Hence, $\hat{y} = \hat{\alpha} + \hat{\beta}x_0$ is then the best estimate for the fitted value. We can compute the variance of \hat{Y} as:

$$\begin{aligned} Var(\hat{Y}) &= Var(\hat{\alpha} + \hat{\beta}x_0) \\ &= Var(\hat{\alpha}) + x_0^2 Var(\hat{\beta}) + 2x_0 Cov(\hat{\alpha}, \hat{\beta}) \\ &= Var(\hat{\alpha}) + (x_0^2 - 2x_0 \bar{x}_n) Var(\hat{\beta}) \\ &= \sigma^2 (\frac{1}{n} + \frac{\bar{x}_n^2}{SXX}) + \frac{(x_0^2 - 2x_0 \bar{x}_n)\sigma^2}{SXX} \\ &= \sigma^2 (\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX}) \end{aligned}$$

because:

$$Cov(\hat{\alpha}, \hat{\beta}) = Cov(\bar{Y}_n - \hat{\beta}\bar{x}_n, \hat{\beta})$$

=
$$Cov(\bar{Y}_n, \hat{\beta}) - \bar{x}_n Cov(\hat{\beta}, \hat{\beta})$$

=
$$-\bar{x}_n Var(\hat{\beta})$$

The *standard error* of the fitted value is then the estimate:

$$se(\hat{Y}) = \hat{\sigma}\sqrt{(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})}$$
 (6)

2 Confidence Intervals

In this section, we make the normality assumption that $U_i \sim \mathcal{N}(0, \sigma^2)$ in the simple linear regression model [1, page 257]:

$$Y_i = \alpha + \beta x_i + U$$

A fortiori, we have $Y_i \sim \mathcal{N}(\alpha + \beta x_i, \sigma^2)$.

2.1 Confidence Intervals of the Coefficients

By (2), the estimator $\hat{\beta}$ is a linear combination of the Y_i 's, hence it has normal distribution as well. By Sections 1.1 and 1.2, it must be that:

$$\hat{\beta} \sim \mathcal{N}(\beta, Var(\hat{\beta}))$$

where the variance $Var(\hat{\beta})$ given in (3) is unknown because σ^2 is unknown. The studentized statistics:

$$\frac{\beta - \beta}{\sqrt{Var(\hat{\beta})}} \sim t(n-2) \tag{7}$$

has a t-student distribution with n-2 degrees of freedom (n-2 because 2 parameters are already estimated). The proof is this fact can be found in [2, page 45]. Hence:

$$P\left(-t_{n-2,0.025} \le \frac{\hat{\beta} - \beta}{\sqrt{Var(\hat{\beta})}} \le t_{n-2,0.025}\right) = 0.95$$

where $t_{n-2,0.025}$ is the critical value of t(n-2) at 0.025. Hence, a 95% confidence interval is:

 $\hat{\beta} \pm t_{n-2,0.025} se(\hat{\beta})$

where $se(\hat{\beta})$ is the standard error from (5). By following the same reasoning, we obtain the confidence intervals for α :

$$\hat{\alpha} \pm t_{n-2,0.025} se(\hat{\alpha})$$

2.2 Confidence Intervals of the Fitted Values

Analogously to the previous subsection, for a fitted value $\hat{y} = \hat{\alpha} + \hat{\beta}x_0$, a 95% confidence interval is:

$$\hat{y} \pm t_{n-2,0.025} se(\hat{Y})$$

where $se(\hat{Y})$ is from (6) In particular, this interval concerns the expectation of fitted values at x_0 . For example, we could conclude that the mean of predicted values at x_0 is between $\hat{y} + t_{n-2,0.025}se(\hat{Y})$ and $\hat{y} - t_{n-2,0.025}se(\hat{Y})$. For a given single prediction, we must also account for the variance of the error term U in:

$$\hat{V} = \hat{\alpha} + \hat{\beta}x_0 + U$$

Let us assume that $U \sim \mathcal{N}(0, \sigma^2)$. By reasoning as in Section 1.3, it can be shown that $Var(\hat{V}) = \sigma^2 (1 + \frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})$, and then by defining:

$$se(\hat{V}) = \hat{\sigma}\sqrt{(1 + \frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})}$$

we have that the prediction interval is:

$$\hat{y} \pm t_{n-2,0.025} se(V)$$

In this case, we could conclude that the specific predicted value at x_0 is on between $\hat{y} + t_{n-2,0.025} se(\hat{V})$ and $\hat{y} - t_{n-2,0.025} se(\hat{V})$.

2.3 Hypothesis Testing

Consider now the two-tailed test of hypothesis:

$$H_0: \beta = 0 \qquad H_1: \beta \neq 0$$

The p-value of observing $|\hat{\beta}|$ or a greater value under the null hypothesis, can be calculated from (7) as:

$$p = P(|T| > |t|) = 2 \cdot P(T > \left|\frac{\hat{\beta} - 0}{se(\hat{\beta})}\right|)$$

for $T \sim t(n-2)$. Hence, H_0 can be rejected in favor of H_1 at significance level of 0.05, i.e. p < 0.05, if $|t| > t_{n-2,0.025}$. A similar approach applies to the intercept.

References

- F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, and L.E. Meester. A Modern Introduction to Probability and Statistics. Springer, 2005.
- [2] M. H. Kutner, C. J. Nachtsheim, J. Neter, and Li W. Applied Linear Statistical Models. 5th edition, 2005.