
1 Least Square Estimators in Simple Linear Regression

Consider the least square estimators:

α̂ = Ȳn − β̂x̄n β̂ =

∑n
1 (xi − x̄n)(Yi − Ȳn)

SXX
(1)

where SXX =
∑n

1 (xi − x̄n)2. Since
∑n

1 (xi − x̄n) = 0,we can rewrite β̂ as:

β̂ =

∑n
1 (xi − x̄n)Yi −

∑n
1 (xi − x̄n)Ȳn

SXX
=

∑n
1 (xi − x̄n)Yi

SXX
(2)

1.1 Expectation

β̂ is an unbiased estimator:

E[β̂] =

∑n
1 (xi − x̄n)E[Yi]

SXX

=

∑n
1 (xi − x̄n)(α+ βxi)

SXX

=
β
∑n

1 (xi − x̄n)xi
SXX

= β

where the last step follows since
∑n

1 (xi− x̄n)xi =
∑n

1 (xi− x̄n)xi−
∑n

1 (xi− x̄n)x̄ = SXX.
See the textbook [1, page 331] for a proof that α̂ is also unbiased, and [1, Exercise 22.12]

for a different proof for β̂.

1.2 Variance and Standard Errors of the Coefficients

We calculate:

V ar(β̂) =

∑n
1 (xi − x̄n)2V ar(Yi)

SXX 2 = σ2

∑n
1 (xi − x̄n)2

SXX 2 =
σ2

SXX
(3)

and:

V ar(α̂) = V ar(Ȳn − β̂x̄n)

= V ar(Ȳn) + x̄2
nV ar(β̂)− 2x̄nCov(Ȳn, β̂)

=
σ2

n
+ x̄2

n

σ2

SXX
− 0 = σ2(

1

n
+

x̄2
n

SXX
) (4)

The covariance in the formula is zero because (recall that Y1, . . . , Yn are independent):

Cov(Ȳn, β̂) = Cov(
1

n

n∑
1

Yi,

∑n
1 (xi − x̄n)Yi

SXX
)

=
1

nSXX
Cov(

n∑
1

Yi,

n∑
1

(xi − x̄n)Yi)

=
1

nSXX

n∑
1

Cov(Yi, (xi − x̄n)Yi)

=
1

nSXX

n∑
1

(xi − x̄n)V ar(Yi) =
σ2

n

∑n
1 (xi − x̄n)

SXX
= 0



The standard errors of the coefficient estimators are defined as the estimates of the standard
deviations (see (3) and (4)):

se(α̂) = σ̂

√
(

1

n
+

x̄2
n

SXX
) se(β̂) =

σ̂√
SXX

(5)

where:

σ̂2 =
1

n− 2

n∑
1

(yi − α̂− β̂xi)2

is the estimate of σ2 (see [1, page 332]).

1.3 Variance and Standard Errors of Fitted Values

For a given value of the explanatory variable, say x0, the estimator ŷ = α̂ + β̂x0 has
expectation E[Ŷ ] = α + βx0. Hence, ŷ = α̂ + β̂x0 is then the best estimate for the fitted
value. We can compute the variance of Ŷ as:

V ar(Ŷ ) = V ar(α̂+ β̂x0)

= V ar(α̂) + x2
0V ar(β̂) + 2x0Cov(α̂, β̂)

= V ar(α̂) + (x2
0 − 2x0x̄n)V ar(β̂)

= σ2(
1

n
+

x̄2
n

SXX
) +

(x2
0 − 2x0x̄n)σ2

SXX

= σ2(
1

n
+

(x̄n − x0)2

SXX
)

because:

Cov(α̂, β̂) = Cov(Ȳn − β̂x̄n, β̂)

= Cov(Ȳn, β̂)− x̄nCov(β̂, β̂)

= −x̄nV ar(β̂)

The standard error of the fitted value is then the estimate:

se(Ŷ ) = σ̂

√
(

1

n
+

(x̄n − x0)2

SXX
) (6)



2 Confidence Intervals

In this section, we make the normality assumption that Ui ∼ N (0, σ2) in the simple linear
regression model [1, page 257]:

Yi = α+ βxi + Ui

A fortiori, we have Yi ∼ N (α+ βxi, σ
2).

2.1 Confidence Intervals of the Coefficients

By (2), the estimator β̂ is a linear combination of of the Yi’s, hence it has normal distribution
as well. By Sections 1.1 and 1.2, it must be that:

β̂ ∼ N (β, V ar(β̂))

where the variance V ar(β̂) given in (3) is unknown because σ2 is unknown. The studentized
statistics:

β̂ − β√
V ar(β̂)

∼ t(n− 2) (7)

has a t-student distribution with n− 2 degrees of freedom (n− 2 because 2 parameters are
already estimated). The proof is this fact can be found in [2, page 45]. Hence:

P

−tn−2,0.025 ≤
β̂ − β√
V ar(β̂)

≤ tn−2,0.025

 = 0.95

where tn−2,0.025 is the critical value of t(n−2) at 0.025. Hence,a 95% confidence interval is:

β̂ ± tn−2,0.025se(β̂)

where se(β̂) is the standard error from (5). By following the same reasoning, we obtain the
confidence intervals for α:

α̂± tn−2,0.025se(α̂)

2.2 Confidence Intervals of the Fitted Values

Analogously to the previous subsection, for a fitted value ŷ = α̂ + β̂x0, a 95% confidence
interval is:

ŷ ± tn−2,0.025se(Ŷ )

where se(Ŷ ) is from (6) In particular, this interval concerns the expectation of fitted values
at x0. For example, we could conclude that the mean of predicted values at x0 is between
ŷ + tn−2,0.025se(Ŷ ) and ŷ − tn−2,0.025se(Ŷ ). For a given single prediction, we must also
account for the variance of the error term U in:

V̂ = α̂+ β̂x0 + U

Let us assume that U ∼ N (0, σ2). By reasoning as in Section 1.3, it can be shown that

V ar(V̂ ) = σ2(1 + 1
n + (x̄n−x0)2

SXX ), and then by defining:

se(V̂ ) = σ̂

√
(1 +

1

n
+

(x̄n − x0)2

SXX
)



we have that the prediction interval is:

ŷ ± tn−2,0.025se(V̂ )

In this case, we could conclude that the specific predicted value at x0 is on between ŷ +
tn−2,0.025se(V̂ ) and ŷ − tn−2,0.025se(V̂ ).

2.3 Hypothesis Testing

Consider now the two-tailed test of hypothesis:

H0 : β = 0 H1 : β 6= 0

The p-value of observing |β̂| or a greater value under the null hypothesis, can be calculated
from (7) as:

p = P (|T | > |t|) = 2 · P (T >

∣∣∣∣∣ β̂ − 0

se(β̂)

∣∣∣∣∣)
for T ∼ t(n− 2). Hence, H0 can be rejected in favor of H1 at significance level of 0.05, i.e.
p < 0.05, if |t| > tn−2,0.025. A similar approach applies to the intercept.
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