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Why Statistics

We need grounded means for reasoning about data science mechanisms.

What will I learn?

• Probability: properties of data generated according to a known randomness model

• Statistics: properties of a randomness model that could have generated given data

• Simulation and R
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Sample spaces and events

• An experiment is a measurement of a random process

• The outcome of a measurement takes values in some set Ω, called the sample space.

Examples:
I Tossing a coin: Ω = {H, T} [Finite]
I Month of birthdays Ω = {Jan, . . . , Dec} [Finite]
I Population of a city Ω = N = {0, 1, 2, . . . , } [Countably infinite]
I Length of a street Ω = R+ = (0,∞). [Uncountably infinite]
I Tossing a coin twice: what is Ω?

Look at seeing-theory.brown.edu
• An event is some subset of A ⊆ Ω of possible outcomes of an experiment.

I L = { Jan, March, May, July, August, October, December } a long month with 31 days

• We say that an event A occurs if the outcome of the experiment lies in the set A.
I If the outcome is Jan then L occurs
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Probability functions

A probability function is a mapping from events to real numbers that satisfies certain
axioms. Intuition: how likely is an event to occur.

• Fact: P({a1, . . . , an}) = P({a1}) + . . . + P({an}) [Generalized additivity]
• Examples:

I P({H}) = P({T}) = 1/2

I P(Jan) = 31/365,P(Feb) = 28/365, . . .P(Dec) = 31/365

I P(L) = 7/12 or 31·7/365?
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Properties of probability functions

• Assigning probability is NOT an easy task.
I Frequentist interpretation: probability measures a “proportion of outcomes”.
I Bayesian (or epistemological) interpretation: probability measures a “degree of belief ”.

• P(Ac) = 1− P(A)

• P(∅) = 0

• A ⊆ B ⇒ P(A) ≤ P(B)

• P(A ∪ B) = P(A) + P(B)− P(A ∩ B) [(Inclusion-exclusion principle]

• probability that at least one coin toss over two lands head?
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Products of sample spaces

An experiment made of multiple sub-experiments

• Eg., Ω = { H, T } × { H, T } = {(H,H), (H,T ), (T ,H), (T ,T )}
• P((H,H)) = 1/4

In general:

• Ω = Ω1 × Ω2 = {(ω1, ω2) | ω1 ∈ Ω1, ω2 ∈ Ω2}
• P((a1, a2)) = 1/|Ω1| · 1/|Ω2| [Uniform function over independent experiments]
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The Monty Hall problem

https://math.andyou.com/tools/montyhallsimulator/montysim.htm
(See also Exercise 2.14 of textbook [T])

Exercise at home: generalize to n doors where host opens n − 2 doors with goats.
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A (countably) infinite sample space

• Example
I Experiment: we toss a coin repeatedly until H turns up.
I Outcome: the number of tosses needed.
I Ω = {1, 2, . . .} = N+

I Suppose: P(H) = p. Then: P(n) = (1− p)n−1p
I Is it a probability function? P(Ω) = . . .

8 / 19



Conditional probability

• Long months and months with ‘r’
I L = { Jan, Mar, May, July, Aug, Oct, Dec } a long month with 31 days
I R = { Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec } a month with ‘r’
I P(L) = 7/12 P(R) = 8/12

• Anna is born in a long month. What is the probability she is born in a month with ‘r’?

P(L ∩ R)

P(L)
=

P({Jan, Mar, Oct, Dec})
P(L)

=
4/12

7/12
=

4

7

• Intuition: probability of an event in the restricted sample space Ω ∩ L

Another example at seeing-theory.brown.edu
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Conditional probability

Properties:
• P(A|C ) 6= P(C |A), in general
• P(Ω|C ) = 1
• if A ∩ B = ∅ then P(A ∪ B|C ) = P(A|C ) + P(B|C )

More generally, the Chain Rule:

P(A1 ∩ A2 ∩ A3 . . . ∩ An) = P(A1) · P(A2|A1) · P(A3|A2,A1) · . . .P(An|An−1, . . . ,A1) 10 / 19



Example: no coincident birthdays

• Bn = {n different birthdays}
• For n = 1, P(B1) = 1
• For n > 1,

P(Bn) = P(Bn−1) · P({the n-th person’s birthday differs from the other n − 1}|Bn−1)

= P(Bn−1) · (1− n − 1

365
) = . . . =

n−1∏
i=1

(1− i

365
)
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Example: case-based reasoning

Factory 1’s light bulbs work for over 5000 hours in 99% of cases.
Factory 2’s bulbs work for over 5000 hours in 95% of cases.
Factory 1 supplies 60% of the total bulbs on the market and Factory 2 supplies 40% of it.
What is the chance that a purchased bulb will work for longer than 5000 hours?

• A = {bulbs working for longer than 5000 hours}
• C = {bulbs made by Factory 1}, hence C c = {bulbs made by Factory 2}
• Since A = (A ∩ C ) ∪ (A ∩ C c) with (A ∩ C ) and (A ∩ C c) disjoint:

P(A) = P(A ∩ C ) + P(A ∩ C c)

• and then by the multiplication rule:

P(A) = P(A|C ) · P(C ) + P(A|C c) · P(C c)

Answer: P(A) = 0.99 · 0.6 + 0.95 · 0.4 = 0.974
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The law of total probability

• Intuition: case-based reasoning
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Testing for Covid-19

A new test for Covid-19 (or Mad-Cow desease, or drug use) has been developed.

• + = { people tested positive } − = { people tested negative } = +c

• C = { people with Covid-19 } C c = { people without Covid-19 }
In lab experiments, people with and without Covid-19 tested

• P(+|C ) = 0.99 [Sensitivity/Recall/True Positive Rate]

• P(−|C c) = 0.99 [Specificity/True Negative Rate]

What is the probability I really have Covid-19 given that I tested positive? [Precision]

P(C |+) =
P(C ∩+)

P(+)
=

P(+|C ) · P(C )

P(+)
=

P(+|C ) · P(C )

P(+|C ) · P(C ) + P(+|C c) · P(C c)

P(C |+) =
0.99 · P(C )

0.99 · P(C ) + 0.01 · (1− P(C ))
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Testing for Covid-19

P(C ), the probability of having Covid-19, is unknown. Let’s plot P(C |+) over P(C ):
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• For P(C ) = 0.02, P(C |+) = .67
• For P(C ) = 0.06, P(C |+) = .86
• For P(C ) = 0.10, P(C |+) = .92
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Bayes’ Rule

• It follows from P(Ci |A) = P(A|Ci )·P(Ci )
P(A) and the law of total probability

• Useful when:
I P(Ci |A) not easy to calculate
I while P(A|Cj) and P(Cj) are known for j = 1, . . . ,m
I E.g., in classification problems (see Bayesian classifiers from Data Mining)

• P(Ci ) is called the prior probability

• P(Ci |A) is called the posterior probability (after seeing event A)
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Independence of events

Intuition: whether one event provides any information about another.

• For P(C ) = 0.10, P(C |+) = .92 - knowing test result changes prob. of being infected!
• Tossing 2 coins:

I A1 is “H on toss 1” and A2 is “H on toss 2”
I P(A1) = P(A2) = 1/2

I P(A2|A1) = P(A2 ∩ A1)/P(A1) = 1/4/1/2 = 1/2 = P(A1)

• Properties:
I A independent of B iff P(A ∩ B) = P(A) · P(B)
I A independent of B iff B independent of A [Symmetry]
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Independence of two or more events

• It is stronger than pairwise independence

P(Ai ∩ Aj) = P(Ai ) · P(Aj) for i 6= j ∈ {1, . . . ,m}
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Independence of two or more events

Alternative definition
Events A1,A2, . . . ,Am are called independent if

P(
⋂
i∈J

Ai ) =
∏
i∈J

P(Ai )

for every J ⊆ {1, . . . ,m}

• Exercise at home: show the two definitions are equivalent

• Example: what is the probability of at least one head in the first 10 tosses of a coin?
Ai = {head in i-th toss}

P(
10⋃
i=1

Ai ) = 1− P(
10⋂
i=1

Ac
i ) = 1−

10∏
i=1

P(Ac
i ) = 1−

10∏
i=1

(1− P(Ai ))
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