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Experiments

• Experiment: roll two independent 4 sided die.

• We are interested in probability of the maximum of the two rolls.
• Modeling so far

I Ω = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), . . . , (4, 4)}
I A = {maximum roll is 2}
I P(A) = P({(1, 2), (2, 1), (2, 2)}) = 3/16
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Random variables

• Modeling X : Ω→ R
I X ((a, b)) = max(a, b)
I A = {maximum roll is 2} = {(a, b) ∈ Ω | X ((a, b)) = 2} = X−1(2)
I P(A) = P(X−1(2)) = 3/16

I We write PX (X = 2)
def
= P(X−1(2)) [Induced probability]
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(Discrete) Random variables

• A random variable is a function X : Ω→ R
I it transforms Ω into a more tangible sample space R

� from (a, b) to min(a, b)

I it decouples the details of a specific Ω from the probability of events of interest
� from Ω = {H, T} or Ω = {good, bad} or Ω = . . . to {0, 1}
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Probability Mass Function (PMF)

• Sample space R but support is {a1, . . . , an}
I p(ai ) > 0 for i = 1, 2, . . .
I p(a1) + p(a2) + . . . = 1
I p(a) = 0 if a 6∈ {a1, a2, . . .}

• “X = a” shorthand for the event {a} ⊆ R
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Cumulative Distribution Function (CDF) and CCDF

• F (a) = P({ai | ai ≤ a}) =
∑

ai≤a p(ai )

• if a ≤ b then F (a) ≤ F (b) [Non-decreasing]

• P(a < X ≤ b) = F (b)− F (a) =
∑

a<ai≤b p(ai )
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Complementary cumulative distribution function (CCDF)

F̄ (a) = P(X > a) = 1− P(X ≤ a) = 1− F (a)

• F̄ (a) = P({ai | ai > a}) =
∑

ai>a p(ai )

See R script
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X ∼ U(m,M)

Uniform discrete distribution
A discrete random variable X has the uniform distribution with
parameters m,M ∈ Z such that m ≤ M, if its pmf is given by

p(a) =
1

M −m + 1
for a = m,m + 1, . . . ,M

We denote this distribution by U(m,M).

• Intuition: all integers in [m,M] have equal chances of being observed.

F (a) =
bac −m + 1

M −m + 1
for m ≤ a ≤ M

See R script
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X ∼ Ben

Benford’s law
A discrete random variable X has the Benford’s distribution, if its pmf is
given by

p(a) = log10

(
1 +

1

a

)
for a = 1, 2, . . . , 9

We denote this distribution by Ben.

• Related to the frequency distribution of leading digits in many real-life numerical datasets.

• See Wikipedia for its interesting history!

See R script
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X ∼ Ber(p)

• X models success/failure in tossing a coin (H, T), testing for a disease (infected, not
infected), membership in a set (member, non-member), etc.

• pX is the pmf (to distinguish from parameter p)

• Also, pX (a) = pa · (1− p)1−a for a ∈ {0, 1}

See R script
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X ∼ Bin(n, p)

• X models the number of successes in n trials (How many H’s when tossing n coins?)
• Intuition: for X1,X2, . . . ,Xn such that Xi ∼ Ber(p) (and independent):

X =
n∑

i=1

Xi ∼ Bin(n, p)

• pk · (1− p)n−k is the probability of observing first k H’s and then n − k T’s
•
(
n
k

)
= n!

k!(n−k)! number of ways to choose the first k variables
• pX (k) computationally expensive to calculate (no closed formula, but approximation/bounds)

See R script
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i.d. random variables

Identically distributed random variables

Two random variables X and Y are said identically distributed (in
symbols, X ∼ Y ), if FX = FY , i.e.,

FX (a) = FY (a) for a ∈ R

• Identically distributed does not mean equal
• Toss a fair coin n times, where n is odd

I let X be the number of heads
I let Y be the number of tails

• X ∼ Bin(n, 0.5) and Y ∼ Bin(n, 1− 0.5) = Bin(n, 0.5)

• Thus, X ∼ Y but are clearly always unequal.
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X ∼ Geo(p)

• X models the number of trials before a success (how many tosses to have a H?)

• Intuition: for X1,X2, . . . such that Xi ∼ Ber(p) (and independent):

X = mini (Xi = 1) ∼ Geo(p)

• F̄ (a) = P(X > a) = (1− p)bac

• F (a) = P(X ≤ a) = 1− F̄ (a) = 1− (1− p)bac

See R script
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You cannot always loose

• H is 1, T is 0, 0 < p < 1

• Bn = {T in the first n-th coin tosses}
• P(∩n≥1Bi ) = ?

• X ∼ Geom(p)

• P(Bn) = P(X > n) = (1− p)n

• P(∩n≥1Bn) = limn→∞P(Bn) = limn→∞(1− p)n = 0

• P(∩n≥1Bn) = limn→∞P(Bn) for Bn non-increasing [Borel–Cantelli Lemma]
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But if you lost so far, you can lose again

Memoryless property

For X ∼ Geo(p), and n, k = 0, 1, 2, . . .

P(X > n + k |X > k) = P(X > n)

Proof

P(X > n + k |X > k) =
P({X > n + k} ∩ {X > k})

P({X > k})

=
P({X > n + k})
P({X > k})

=
(1− p)n+k

(1− p)k

= (1− p)n = P(X > n)
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X ∼ NBin(n, p)

Negative binomial

A discrete random variable X has a negative binomial with parameters n and p,
where n = 0, 1, 2, . . . and 0 < p ≤ 1, if its probability mass function is given by

pX (k) = P(X = k) =

(
k + n − 1

k

)
(1− p)k · pn for k = 0, 1, 2, . . .

• X models the number of failures before the n-th success (how many T’s to have n H’s?)
• Intuition: for X1,X2, . . . ,Xn such that Xi ∼ Geo(p) (and independent):

X =
n∑

i=1

Xi − n ∼ NBin(n, p)

• (1− p)k · pn is the probability of observing first k T’s and then n H’s
•
(
k+n−1

k

)
= (k+n−1)!

k!(n−1)! number of ways to choose the first k variables among k + n − 1 (the last one

must be a success!)

See R script
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X ∼ Poi(µ)

• X models the number of events in a fixed interval if these events occur with a known
constant mean rate µ and independently of the last event
I telephone calls arriving in a system
I number of patients arriving at an hospital
I customers arriving at a counter

• µ denotes the mean number of events
• Bin(n, µ/n) is the number of successes in n trials, assuming p = µ/n, i.e., p · n = µ
• When n→∞: Bin(n, µ/n)→ Poi(µ) [Law of rare events]
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Common distributions
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