Statistical Methods for Data Science

Lesson 04 - Recalls on calculus

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

J. Ward, J. Abdey. Mathematics and Statistics. University of London, 2013. Chapters 1-8 of Part 1.

• Errata-corrige at pag. 30: $\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + c \cdot b}{b \cdot d}$ and $\frac{a}{b} - \frac{c}{d} = \frac{a \cdot d - c \cdot b}{b \cdot d}$

Sets and functions

- Numerical sets
- $\triangleright \mathbb{N} = \{0, 1, 2, \ldots\}$ [Natural numbers] $\triangleright \mathbb{Z} = \mathbb{N} \cup \{-1, -2, \ldots\}$ [Integers] $\triangleright \emptyset = \{m/n \mid m, n \in \mathbb{Z}, n \neq 0\}$ [Rationals] \triangleright R = { fractional numbers with possibly infinitely many digits } \supseteq Q [Reals]
 \triangleright T = R \ ① [Irrationals] $\blacksquare = \mathbb{R} \setminus \mathbb{Q}$ [Irrationals] \Box y such that $y \cdot y = 2$ belongs to \Box • Functions $\triangleright \mathbb{R} \times \mathbb{R} = \{ (x, y) \mid x, y \in \mathbb{R}$ [Cartesian product] \triangleright f : $\mathbb{R} \to \mathbb{R}$ is a subset $f \subseteq \mathbb{R} \times \mathbb{R}$ such that $(x, y_0), (x, y_1) \in f$ implies $y_0 = y_1$ [Functions] □ usually written $f(x) = y$ for $(x, y) \in f$ $f(x) = v$ for all x $[Constant$ functions] $f(x) = a \cdot x + b$ for fixed a, b [Linear functions] $f(x) = a \cdot x^2 + b$ for fixed a, b [Quadratic functions] $f(x) = \sum_{i=0}^{n} a_i \cdot x^i$ for fixed a_0, \ldots, a_n [Polinomials]

See R script

Functions

\n- \n
$$
\text{dom}(f) = \{x \in \mathbb{R} \mid \exists y \in \mathbb{R}. (x, y) \in f\}
$$
\n
\n- \n
$$
\text{im}(f) = \{y \in \mathbb{R} \mid \exists x \in \mathbb{R}. (x, y) \in f\}
$$
\n
\n- \n
$$
f^{-1} = \{(y, x) \mid (x, y) \in f\}
$$
\n
\n- \n
$$
f^{-1} = \{(y, x) \mid (x, y) \in f\}
$$
\n
\n- \n
$$
f^{-1}(y) = x \text{ iff } f(x) = y
$$
\n
\n- \n
$$
f^{-1}(f(x)) = x \text{ and } f(f^{-1}(y)) = y
$$
\n
\n- \n
$$
\text{Examples}
$$
\n
\n- \n
$$
\sqrt{y} = x \text{ iff } x^2 = y \text{ over } x \ge 0
$$
\n
\n- \n
$$
\sqrt{y} = x \text{ iff } x^n = y \text{ over } x \ge 0
$$
\n
\n- \n
$$
y \in Y
$$
\n
\n
\n\n*u* = 1, *v* = 1,

Powers and logarithms

Power laws

The power laws state that

$$
a^n \cdot a^m = a^{n+m} \qquad \frac{a^n}{a^m} = a^{n-m} \qquad (a^n)^m = a^{nm}
$$

provided that both sides of these expressions exist. In particular, we have

$$
a^0 = 1 \qquad \text{and} \qquad a^{-n} = \frac{1}{a^n}.
$$

If it exists, we also define the *positive n*th root of a, written $\sqrt[n]{a}$, to be $a^{\frac{1}{n}}$.

•
$$
log_a(y) = x
$$
 iff $a^x = y$ for $a \neq 1, x > 0$

- for $n/m \in \mathbb{Q}$: $a^{n/m} \stackrel{\text{def}}{=} (a^n)^{1/m}$
- what is a^x for $x \in \mathbb{I}$?

$$
e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots = \sum_{n \ge 0} \frac{x^n}{n!}
$$

and $a^x = (e^{\log_e(a)})^x = e^{x \cdot \log_e(a)}$

$[Logarithms]$

See R script

Gradient and derivatives

• The gradient of a straight line is a measure of how 'steep' the line is.

 $y = a \cdot x + b$

- a is the gradient and b the intercept (at $x = 0$) • For $y = f(x) = x^2$? In Tangent at $x = a$ is $y = m \cdot x + b$ \blacktriangleright $m = \frac{f(a+\delta)-f(a)}{\delta} = \frac{2 \cdot a \cdot \delta + \delta^2}{\delta} = 2 \cdot a$ for $\delta \to 0$ \blacktriangleright $b = 2 \cdot a - a^2$ because $m \cdot a + b = a^2$ • More in general?
	- For $y = f(x)$, $m = f'(x)$
	- If f'() is called the **derivative** of f (), also written $\frac{\delta f}{\delta x}$ or $\frac{df}{dx}$
	- \triangleright Not all functions are differentiable!

See R script or [this Colab Notebook](https://colab.research.google.com/github/ageron/handson-ml2/blob/master/math_differential_calculus.ipynb)

Derivatives

Standard derivatives

- **If** k is a constant, then $f(x) = k$ gives $f'(x) = 0$.
- **If** $k \neq 0$ is a constant, then $f(x) = x^k$ gives $f'(x) = kx^{k-1}$.

$$
\bullet \quad f(x) = e^x \text{ gives } f'(x) = e^x.
$$

 $f(x) = \ln x$ gives $f'(x) = \frac{1}{x}$.

• Constant multiple rule:

$$
\frac{d}{dx}[k \cdot f(x)] = k \cdot \frac{df}{dx}(x)
$$

• Sum rule:

$$
\frac{d}{dx}[f(x) + g(x)] = \frac{df}{dx}(x) + \frac{dg}{dx}(x)
$$

Derivatives

• Product rule:

$$
\frac{d}{dx}[f(x)\cdot g(x)] = \frac{df}{dx}(x)\cdot g(x) + f(x)\cdot \frac{dg}{dx}(x)
$$

• Quotient rule:

$$
\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \left[\frac{df}{dx}(x) \cdot g(x) - f(x) \cdot \frac{dg}{dx}(x)\right] \cdot \frac{1}{g(x)^2}
$$

• Chain rule:

$$
\frac{d}{dx}[f(g(x))] = \frac{df}{dg}(g(x)) \cdot \frac{dg}{dx}(x)
$$

- $\frac{d}{dx}e^{-x} = \ldots$
- Inverse rule:

$$
\frac{d}{dx}[f^{-1}(x)] = \frac{1}{\frac{df}{dx}(f^{-1}(x))}
$$

• $\frac{d}{dx} \log x = \ldots$

See R script or [this Colab Notebook](https://colab.research.google.com/github/ageron/handson-ml2/blob/master/math_differential_calculus.ipynb)

Optimization

- $f'(x) > 0$ implies $f()$ is increasing at x
- $f'(x) < 0$ implies $f()$ is decreasing at x
- $f'(x) = 0$ we cannot say $[Stationary point]$

Optimization - second derivatives

- $f''(x) < 0$ implies $f(x)$ is a maximum
- $f''(x) > 0$ implies $f(x)$ is a minimum
- $f''(x) = 0$ we cannot say

[Maximum, minimum, or point of inflection]

See [this Colab Notebook](https://colab.research.google.com/github/ageron/handson-ml2/blob/master/math_differential_calculus.ipynb)

Integration

- Given $f'(x)$, what is $f(x)$?
- Integration is the inverse of differentiation
- Geometrical meaning:

Key concepts in integration

If $F(x)$ is a function whose derivative is the function $f(x)$, then we have

$$
\int f(x) \, dx = F(x) + c
$$

where c is an arbitrary constant. In particular, we call the

- function, $f(x)$, the *integrand* as it is what we are integrating, \blacksquare
- function, $F(x)$, an *antiderivative* as its derivative is $f(x)$, \blacksquare
- constant, c, a constant of integration which is completely arbitrary,[†] and \blacksquare
- integral, $\int f(x) dx$, an *indefinite integral* since, in the result, c is arbitrary.
- Definite integrals over an interval $[a, b]$:

$$
\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)
$$

Integration

Standard integrals

\n■ If
$$
k \neq -1
$$
 is a constant, then
$$
\int x^k \, dx = \frac{x^{k+1}}{k+1} + c.
$$

\nIn particular, if $k = 0$, we have
$$
\int 1 \, dx = \int x^0 \, dx = x + c.
$$

\n■
$$
\int e^x \, dx = e^x + c.
$$

• Constant multiple rule:

$$
\int [k \cdot f(x)] dx = k \cdot \int f(x) dx
$$

• Sum rule:

$$
\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx
$$

See R script

Integration by parts

• From the product rule of derivatives:

$$
\frac{d}{dx}[f(x)\cdot g(x)] = \frac{df}{dx}(x)\cdot g(x) + f(x)\cdot \frac{dg}{dx}(x)
$$

• take the inverse of both sides:

$$
f(x) \cdot g(x) = \int f'(x) \cdot g(x) dx + \int f(x) \cdot g'(x) dx
$$

\n- and then:\n
$$
\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx
$$
\n
\n- $$
\int \lambda x e^{-\lambda x} dx = \ldots = -e^{-\lambda x} (x + 1/\lambda)
$$
\n
\n- consider $f(x) = x$ and $g'(x) = \lambda e^{-\lambda x}$ \n
\n

► $g(x) = -e^{-\lambda x}$ and $f'(x) = 1$

Integration by change of variable

• Change of variable rule:

$$
\int f(y)dy =_{y=g(x)} \int f(g(x))g'(x)dx
$$

•
$$
\int \frac{\log x}{x} dx = \int y dy = y^2/2
$$
 for $y = \log x$ hence, $\int \frac{\log x}{x} dx = (\log x)^2/2$
\n• consider $f(y) = y$ and $g(x) = \log x$