Statistical Methods for Data Science

Lesson 09 - Moments, joint distributions, sum of random variables

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Moments

- Let X be a continuous random variable with density function f(x)
- k^{th} moment of X, if it exists, is:

$$E[X^k] = \int_{-\infty}^{\infty} x^k f(x) dx$$

- $\mu = E[X]$ is the first moment of X
- *k*th central moment of *X* is:

$$\mu_k = E[(X - \mu)^k] = \int_{-\infty}^{\infty} (x - \mu)^k f(x) dx$$

- $\sigma = \sqrt{E[(X \mu)^k]}$ standard deviation is the square root of the second central moment
- k^{th} standardized moment of X is:

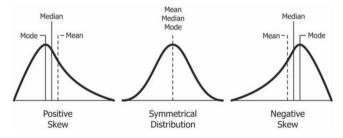
$$\tilde{\mu}_k = \frac{\mu_k}{\sigma^k} = E\left[\left(\frac{X-\mu}{\sigma}\right)^k\right]$$

Skewness

- $\tilde{\mu}_1 = E[(X-\mu)]/\sigma = 0$ since $E[X \mu] = 0$
- $\tilde{\mu}_2 = E[(X-\mu)^2]/\sigma^2 = 1$ since $\sigma^2 = E[(X-\mu)^2]$
- $\tilde{\mu}_3 = E[(X-\mu)^3]/\sigma^3$

[(Pearson's moment) coefficient of skewness]

• Skewness indicates direction and magnitude of a distribution's deviation from symmetry



• E.g., for $X \sim Exp(\lambda)$, $\tilde{\mu}_3 = 2$

Prove it!

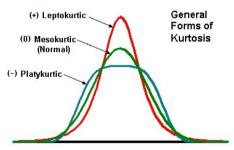
Kurtosis

• $\tilde{\mu}_4 = E[(\frac{X-\mu}{\sigma})^4]$

[(Pearson's moment) coefficient of kurtosis]

• For $X \sim N(\mu, \sigma)$, $\tilde{\mu}_4 = 3$

- $ilde{\mu}_4-3$ is called kurtosis in excess
- ullet Kurtosis is a measure of the dispersion of X around the two values $\mu \pm \sigma$



- $\tilde{\mu}_4 > 3$ Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
- $\tilde{\mu}_4 <$ 3 *Platykurtic* (broad) distribution has *thinner* tails

Joint distributions

- Random variables related to the same experiment often influence one another
- $\Omega = \{(i,j) \mid i,j \in 1,\ldots,6\}$ rolls of two dies
- X = sum(i,j) and Y = max(i,j)
- $P(X = 4, Y = 3) = P({X = 4} \cap {Y = 3}) = P({(3,1),(1,3)}) = \frac{2}{36}$

Joint and marginal p.m.f.

• In general:

$$P_{XY}(X = a, Y = b) = P(\{\omega \in \Omega \mid X(\omega) = a \text{ and } Y(\omega) = b\})$$

DEFINITION. The *joint probability mass function* p of two discrete random variables X and Y is the function $p: \mathbb{R}^2 \to [0, 1]$, defined by

$$p(a,b) = P(X = a, Y = b)$$
 for $-\infty < a, b < \infty$.

• The marginal p.m.f.'s can be derived from the joint p.m.f. as:

$$p_X(a) = P_X(X = a) = \sum_b P_{XY}(X = a, Y = b)$$

$$p_Y(b) = P_Y(Y = b) = \sum_a P_{XY}(X = a, Y = b)$$

Joint and marginal CDF

• In general: $P_{XY}(X \le a, Y \le b) = P(\{\omega \in \Omega \mid X(\omega) \le a \text{ and } Y(\omega) \le b\})$

DEFINITION. The *joint distribution function* F of two random variables X and Y is the function $F: \mathbb{R}^2 \to [0,1]$ defined by

$$F(a,b) = P(X \le a, Y \le b)$$
 for $-\infty < a, b < \infty$.

• The marginal distribution functions of X and Y are:

$$F_X(a) = P_X(X \le a) = F_{XY}(a, \infty) = \lim_{b \to \infty} F(a, b)$$

$$F_Y(b) = P_Y(Y \le b) = F_{XY}(\infty, b) = \lim_{a \to \infty} F(a, b)$$

• But given $F_X()$ and $F_Y()$ we cannot reconstruct $F_{XY}()$!

Joint distributions: continuous random variables

DEFINITION. Random variables X and Y have a *joint continuous* distribution if for some function $f: \mathbb{R}^2 \to \mathbb{R}$ and for all numbers a_1, a_2 and b_1, b_2 with $a_1 \leq b_1$ and $a_2 \leq b_2$,

$$P(a_1 \le X \le b_1, a_2 \le Y \le b_2) = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) \, dx \, dy.$$

The function f has to satisfy $f(x,y) \geq 0$ for all x and y, and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = 1$. We call f the *joint probability density function* of X and Y.

• The marginal density functions of X and Y are:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

• Moreover, as in the univariate case:

$$F(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) dxdy \qquad f(x,y) = \frac{d}{dx} \frac{d}{dy} F(x,y) = \frac{d^2}{dxdy} F(x,y)$$
See R script

Independence of two random variables

Conditional probability:

$$P(X \le a | Y \le b) = \frac{P(X \le a, Y \le b)}{P(Y \le b)}$$

Independence

$$P(X \le a | Y \le b) = P(X \le a)$$

or, equivalently:

$$P(X \le a, Y \le b) = P(X \le a) \cdot P(Y \le b)$$
 $F_{XY}(a, b) = F_X(a) \cdot F_Y(b)$

or, for discrete/continuous random variables, equivalently:

$$p(a,b) = p(a) \cdot p(b)$$
 $f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$

Functions of random variables

- $V = \pi H R^2$ be the volume of a vase of height H and radius R
- $g(H,R) = \pi HR^2$ is a random variable (function of random variables)
- $P_V(V=3) = P_g(g(H,R)=3) = P(\{\omega \in \Omega \mid g(H(\omega), R(\omega))=3\})$
- How to calculate E[V]?

$$E[V] = E[\pi HR^2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \pi h r^2 f_H(h) f_R(r) dh dr$$

TWO-DIMENSIONAL CHANGE-OF-VARIABLE FORMULA. Let X and Y be random variables, and let $g: \mathbb{R}^2 \to \mathbb{R}$ be a function. If X and Y are discrete random variables with values a_1, a_2, \ldots and b_1, b_2, \ldots , respectively, then

$$\mathrm{E}\left[g(X,Y)\right] = \sum_{i} \sum_{j} g(a_i,b_j) \mathrm{P}(X=a_i,Y=b_j) \,.$$

If X and Y are continuous random variables with joint probability density function f, then

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y) dx dy.$$

Linearity of expectations

$$E[rX + Ys + t] = rE[X] + sE[Y] + t$$

Proof. (discrete case)

$$E[rX + Ys + t] = \sum_{a} \sum_{b} (ra + sb + t)P(X = a, Y = b)$$

$$= \left(r \sum_{a} \sum_{b} aP(X = a, Y = b)\right) + \left(s \sum_{a} \sum_{b} bP(X = a, Y = b)\right) + \left(t \sum_{a} \sum_{b} P(X = a, Y = b)\right)$$

$$= \left(r \sum_{a} aP(X = a)\right) + \left(s \sum_{b} bP(Y = b)\right) + t = rE[X] + sE[Y] + t$$

• If X and Y are independent, E[XY] = E[X]E[Y]

Prove it!

Applications

Expectation of some discrete distributions

```
► X \sim Ber(p) E[X] = p

► X \sim Bin(n, p) E[X] = n \cdot p

□ Because X = \sum_{i=1}^{n} X_i \text{ for } X_1, \dots, X_n \sim Ber(p)

► X \sim Geo(p) E[X] = \frac{1}{p}

► X \sim NBin(n, p) E[X] = \frac{n \cdot (1-p)}{p}

□ Because X = \sum_{i=1}^{n} X_i - n \text{ for } X_1, \dots, X_n \sim Geo(p)
```

- Expectation of some continuous distributions
 - ► $X \sim Exp(\lambda)$ $E[X] = \frac{1}{\lambda}$ ► $X \sim Gam(n, \lambda)$ $E[X] = \frac{n}{\lambda}$ □ Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \dots, X_n \sim Exp(\lambda)$

Covariance

$$Var(X + Y) = E[(X + Y - E[X + Y])^{2}] = E[((X - E[X]) + (Y - E[Y]))^{2}]$$

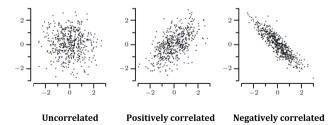
$$= E[(X - E[X])^{2}] + E[(Y - E[Y])^{2}] + 2E[(X - E[X])(Y - E[Y])]$$

$$= Var(X) + Var(Y) + 2Cov(X, Y)$$

Covariance

The covariance Cov(X, Y) of two random variables X and Y is the number:

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$



Covariance

• Theorem Cov(X, Y) = E[XY] - E[X]E[Y]

- Prove it!
- ▶ If X and Y are independent, Cov(X, Y) = 0 and Var(X + Y) = Var(X) + Var(Y)
- ▶ But there are X and Y uncorrelated (ie., Cov(X, Y) = 0) that are dependent!
- Variances of some discrete distributions
 - $X \sim Ber(p)$ Var(X) = p(1-p)
 - $ightharpoonup X \sim Bin(n,p) \quad Var(X) = np(1-p)$
 - \square Because $X = \sum_{i=1}^{n} X_i$ for $X_1, \dots, X_n \sim Ber(p)$ and independent
 - $ightharpoonup X \sim Geo(p) \quad Var(X) = \frac{1-p}{p^2}$
 - $ightharpoonup X \sim NBin(n,p) \quad Var(X) = n \frac{1-p}{p^2}$
 - \square Because $X = \sum_{i=1}^{n} X_i n$ for $X_1, \ldots, X_n \sim Geo(p)$ and independent
- Variances of some continuous distributions
 - $X \sim Exp(\lambda)$ $Var(X) = 1/\lambda^2$
 - $X \sim Gam(n,\lambda)$ $Var(X) = \frac{n}{\lambda^2}$
 - $\ \square$ Because $X = \sum_{i=1}^n X_i$ for $X_1, \ldots, X_n \sim \textit{Exp}(\lambda)$ and independent

Covariance and correlation coefficient

COVARIANCE UNDER CHANGE OF UNITS. Let X and Y be two random variables. Then

$$Cov(rX + s, tY + u) = rt Cov(X, Y)$$

for all numbers r, s, t, and u.

Covariance depends on the units of measure!

DEFINITION. Let X and Y be two random variables. The correlation coefficient $\rho(X,Y)$ is defined to be 0 if Var(X) = 0 or Var(Y) = 0, and otherwise

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}.$$

- Correlation coefficient is *dimensionless* (not affected by change of units)
 - ▶ E.g., if X and Y are in Km, then Cov(X,Y), Var(X) and Var(Y) are in Km² $-1 \leq \rho(X,Y) \leq 1$

Sum of independent random variables

• For $X \sim F_X$ and $Y \sim F_Y$, let Z = X + Y. We know

$$E[Z] = E[X] + E[Y]$$
 $Var(Z) = Var(X) + Var(Y) + 2Cov(X, Y)$

- What is the distribution function of Z (when X and Y are independent)?
- Examples:
 - ▶ For $X \sim Bin(n, p)$ and $Y \sim Bin(m, p)$, $Z \sim Bin(n + m, p)$
 - ▶ For $X \sim Geo(p)$ (days radio 1 breaks) and $Y \sim Geo(p)$ (days radio 2 breaks):

$$p_Z(X+Y=k)=\sum_{l=1}^{k-1}p_X(l)\cdot p_Y(k-l)=(k-1)p^2(1-p)^{k-2}$$

Adding two independent discrete random variables. Let X and Y be two independent discrete random variables, with probability mass functions p_X and p_Y . Then the probability mass function p_Z of Z=X+Y satisfies

$$p_Z(c) = \sum_j p_X(c - b_j) p_Y(b_j),$$

where the sum runs over all possible values b_i of Y.

Sum of independent random variables

Adding two independent continuous random variables. Let X and Y be two independent continuous random variables, with probability density functions f_X and f_Y . Then the probability density function f_Z of Z=X+Y is given by

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z - y) f_Y(y) \, \mathrm{d}y$$

for $-\infty < z < \infty$.

- The integral is called the **convolution** of $f_X()$ and $f_Y()$
- $X, Y \sim Exp(\lambda), Z = X + Y, X, Y, Z \ge 0$ implies $0 \le Y \le Z$

$$f_Z(z) = \int_{-\infty}^{\infty} \lambda e^{-\lambda(z-y)} \lambda e^{-\lambda y} dy = \lambda^2 e^{-\lambda z} \int_0^z 1 dy = \lambda^2 e^{-\lambda z} z$$

• $Z = X_1 + \ldots + X_n$ for $X_i \sim Exp(\lambda)$ independent:

[Earlang $Erl(n, \lambda)$ distribution]

$$f_Z(z) = \frac{\lambda(\lambda z)^{n-1} e^{-\lambda z}}{(n-1)!}$$

$Gam(\alpha, \lambda)$

- Let λ be some average rate of an event, e.g., $\lambda = 1/10$ number of buses in a minute
- The waiting times to see an event is Exponentially distributed. E.g., probability of waiting x minutes to see one bus.
- The waiting times between n occurrences of an event are Erlang distributed. E.g., probability of waiting z minutes to see n buses.

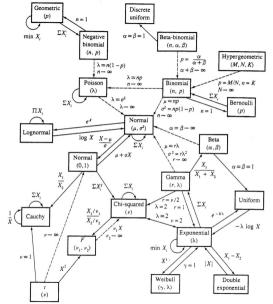
DEFINITION. A continuous random variable X has a gamma distribution with parameters $\alpha>0$ and $\lambda>0$ if its probability density function f is given by f(x)=0 for x<0 and

$$f(x) = \frac{\lambda (\lambda x)^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}$$
 for $x \ge 0$,

where the quantity $\Gamma(\alpha)$ is a normalizing constant such that f integrates to 1. We denote this distribution by $Gam(\alpha, \lambda)$.

• Extends $Erl(n, \lambda)$ to $\alpha > 0$ by Euler's $\Gamma(\alpha)$

Common distributions



Relationships among common distributions. Solid lines represent transformations and special cases, dashed lines represent limits. Adapted from Leemis (1986). 19 / 19