Statistical Methods for Data Science Lesson 10 - Law of large numbers, and the central limit theorem

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Chebyshev's inequality

• Question: how much probability mass is near the expectation?

CHEBYSHEV'S INEQUALITY. For an arbitrary random variable Y and any $a > 0$:

$$
P(|Y - E[Y]| \ge a) \le \frac{1}{a^2} \text{Var}(Y).
$$

• Proof. (continuous case) Let $\mu = E[Y]$:

$$
Var(Y) = \int_{-\infty}^{\infty} (y - \mu)^2 f(y) dy \ge \int_{|y - \mu| \ge a} (y - \mu)^2 f(y) dy
$$

\n
$$
\ge \int_{|y - \mu| \ge a} a^2 f(y) dy = a^2 P(|Y - \mu| \ge a)
$$

Chebyshev's inequality

- " $\mu \pm$ a few σ " rule: Most of the probability mass of a random variable is within a few standard deviations from its expectation!
- Let $\sigma^2 = \text{Var}(Y)$. For $a = k\sigma$:

$$
P(|Y - \mu| < k\sigma) = 1 - P(|Y - \mu| \geq k\sigma) \geq 1 - \frac{1}{k^2 \sigma^2} \text{Var}(Y) = 1 - \frac{1}{k^2}
$$

- For $k = 2, 3, 4$, the RHS is $3/4$, $8/9$, $15/16$
- Chebyshev's inequality is sharp when nothing is known about X , but in general it is a large bound!

See R script

Averages vary less

• Guessing the weight of a cow

• [See Francis Galton](https://en.wikipedia.org/wiki/Francis_Galton) (inventor of standard deviation and much more)

Expectation and variance of an average

 $\bullet\,$ Let X_1,X_2,\ldots,X_n be independent r. v. for which $E[X_i]=\mu$ and $\mathit{Var}(X_i)=\sigma^2$

$$
\bar{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n}
$$

EXPECTATION AND VARIANCE OF AN AVERAGE. If \bar{X}_n is the average of *n* independent random variables with the same expectation μ and variance σ^2 , then

$$
E\left[\bar{X}_n\right] = \mu \quad \text{and} \quad \text{Var}(\bar{X}_n) = \frac{\sigma^2}{n}.
$$

• Notice that X_1, \ldots, X_n are not required to be identically distributed! See R script

The (weak) law of large numbers

 $\bullet\,$ Apply Chebyshev's inequality to $\bar X_n$

$$
P(|\bar{X}_n - \mu| > \epsilon) \leq \frac{1}{\epsilon^2} \text{Var}(\bar{X}_n) = \frac{\sigma^2}{n\epsilon^2}
$$

• For
$$
n \to \infty
$$
, $\sigma^2/(n\epsilon^2) \to 0$

THE LAW OF LARGE NUMBERS. If \bar{X}_n is the average of *n* independent random variables with expectation μ and variance σ^2 , then for any $\varepsilon > 0$: $\lim_{n\to\infty} \mathbf{P}(|\bar{X}_n - \mu| > \varepsilon) = 0.$

- $\bullet~~ \bar{X}_n$ converges to μ as $n \to \infty!$
- It holds also if σ^2 is infinite (proof not included)
- Notice (again!) that X_1, \ldots, X_n are not required to be identically distributed!

Recovering probability of an event

- Let $C = (a, b]$, and want to know $p = P(X \in C)$
- Run *n* independent measurements
- Model the results as X_1, \ldots, X_n random variables
- Define the indicator variables, for $i = 1, \ldots, n$:

$$
Y_i = \left\{ \begin{array}{ll} 1 & \text{if } X_i \in C \\ 0 & \text{if } X_i \notin C \end{array} \right.
$$

• Y_i 's are independent

[Propagation of independence]

- $E[Y_i] = 1 \cdot P(X_i \in C) + 0 \cdot P(X_i \in C) = p$
- Defined $\bar{Y}_n = \frac{Y_1 + ... + Y_n}{n}$, by the law of large numbers:

$$
\lim_{n\to\infty}P(|\bar{Y}_n-p|>\epsilon)=0
$$

• Frequency counting (e.g., in histograms) is a probability estimation method!

The central limit theorem

 $\bullet\,$ Let X_1,X_2,\ldots,X_n be independent r. v. for which $E[X_i]=\mu$ and $\mathit{Var}(X_i)=\sigma^2$

$$
\bar{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} \quad E[\bar{X}_n] = \mu \quad Var(\bar{X}_n) = \frac{\sigma^2}{n}
$$

- \bullet Can we derive the distribution of $\bar{\mathsf{X}}_n$?
- For $Y_1 \sim N(\mu_1, \sigma_1^2)$ and $Y_2 \sim N(\mu_2, \sigma_2^2)$ indepedent: ► $Y_1 + Y_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ [the converse is also true (Levy Cramer thm)] ► and $\frac{Y_1+Y_2}{2} \sim N(\frac{\mu_1+\mu_2}{2}, \frac{\sigma_1^2+\sigma_2^2}{2^2})$
- Assume $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$:

$$
\bar{X}_n \sim N(\mu, \frac{\sigma^2}{n}) \qquad Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{\bar{X}_n - E[\bar{X}_n]}{\sqrt{\frac{\text{Var}(\bar{X}_n)}{n}}} \sim N(0, 1)
$$

• OK, does it generalize to any distribution? Yes!

The central limit theorem

THE CENTRAL LIMIT THEOREM. Let X_1, X_2, \ldots be any sequence of independent identically distributed random variables with finite positive variance. Let u be the expected value and σ^2 the variance of each of the X_i . For $n \geq 1$, let Z_n be defined by

$$
Z_n = \sqrt{n} \, \frac{\bar{X}_n - \mu}{\sigma};
$$

then for any number a

$$
\lim_{n \to \infty} F_{Z_n}(a) = \Phi(a),
$$

where Φ is the distribution function of the $N(0,1)$ distribution. In words: the distribution function of Z_n converges to the distribution function Φ of the standard normal distribution.

- Some generalizations get rid of the identically distributed assumption.
- Why is it so frequent to observe a normal distribution?
	- \triangleright Sometime it is the average/sum effects of other variables
	- \triangleright This justifies the common use of it to stand in for the effects of unobserved variables

See R script and [seeing-theory.brown.edu](https://seeing-theory.brown.edu/probability-distributions/index.html#section3)

Applications: approximating probabilities

• Let
$$
X_1, ..., X_n \sim Exp(2)
$$
, for $n = 100$ $\mu = \sigma = 1/2$

$$
\mu=\sigma=1\!/2
$$

- \bullet Assume to observe realizations x_1,\ldots,x_n such that $\bar{x}_n=\frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^{n} x_i = 0.6$
- $\bullet\,$ What is the probability $P(\bar{X}_n\geq 0.6)$ of observing such a value or a greater value?

Option A: Compute the distribution of \bar{X}_n

- $S_n = X_1 + \ldots + X_n \sim Erl(n, 2)$
- \bullet $\bar{X}_n =$ $\varsigma_n /$ n hence by Change-of-units transformation

$$
F_{\bar{X}_n}(x) = F_{S_n}(n \cdot x) \quad \text{and} \quad f_{\bar{X}_n}(x) = n \cdot f_{S_n}(n \cdot x)
$$

• and then:

$$
P(\bar{X}_n \geq 0.6) = 1 - F_{\bar{X}_n}(0.6) = 1 - F_{S_n}(n \cdot 0.6) = 1 - \text{pgamma}(60,~\text{n},~2) = 0.0279
$$

Applications: approximating probabilities

• Let
$$
X_1, ..., X_n \sim Exp(2)
$$
, for $n = 100$ $\mu = \sigma = 1/2$

$$
\mu=\sigma=1\!/2
$$

- \bullet Assume to observe realizations x_1,\ldots,x_n such that $\bar{x}_n=\frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^{n} x_i = 0.6$
- $\bullet\,$ What is the probability $P(\bar{X}_n\geq 0.6)$ of observing such a value or a greater value?

Option B: Approximate them by using the CLT

•
$$
Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)
$$
 implies $\bar{X}_n = \frac{\sigma}{\sqrt{n}} Z_n + \mu \sim N(\mu, \sigma^2/n)$ for $n \to \infty$

• and then:

$$
P(\bar{X}_n \ge 0.6) = P(\frac{\sigma}{\sqrt{n}} Z_n + \mu \ge 0.6) = P(Z_n \ge \frac{0.6 - \mu}{\sigma/\sqrt{n}}) \approx 1 - \Phi(\frac{0.6 - 0.5}{0.5/10}) = 0.0228
$$

 \bullet also, notice $X_1 + \ldots + X_n = \sqrt{n} \sigma Z_n + n\mu \sim N(n\mu, n\sigma^2)$

See R script

How large should n be?

- How fast is the convergence of Z_n to $N(0, 1)$?
- The approximation might be poor when:
	-
	- \blacktriangleright X_i is asymmetric, bimodal, or discrete
	- ► the value to test (0.6 in our example) is far from μ

 \triangleright n is small [the myth of](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34906.pdf) $n > 30$