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Chebyshev’s inequality

• Question: how much probability mass is near the expectation?

• Proof. (continuous case) Let µ = E [Y ]:

Var(Y ) =

∫ ∞
−∞

(y − µ)2f (y)dy ≥
∫
|y−µ|≥a

(y − µ)2f (y)dy

≥
∫
|y−µ|≥a

a2f (y)dy = a2P(|Y − µ| ≥ a)
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Chebyshev’s inequality

• “µ± a few σ” rule: Most of the probability mass of a random variable is within a few
standard deviations from its expectation!

• Let σ2 = Var(Y ). For a = kσ:

P(|Y − µ| < kσ) = 1− P(|Y − µ| ≥ kσ) ≥ 1− 1

k2σ2
Var(Y ) = 1− 1

k2

• For k = 2, 3, 4, the RHS is 3/4, 8/9, 15/16

• Chebyshev’s inequality is sharp when nothing is known about X , but in general it is a
large bound!

See R script
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Averages vary less

• Guessing the weight of a cow

• See Francis Galton (inventor of standard deviation and much more)
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https://en.wikipedia.org/wiki/Francis_Galton


Expectation and variance of an average

• Let X1,X2, . . . ,Xn be independent r. v. for which E [Xi ] = µ and Var(Xi ) = σ2

X̄n =
X1 + X2 + . . .+ Xn

n

• Notice that X1, . . . ,Xn are not required to be identically distributed!

See R script
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The (weak) law of large numbers

• Apply Chebyshev’s inequality to X̄n

P(|X̄n − µ| > ε) ≤ 1

ε2
Var(X̄n) =

σ2

nε2

• For n→∞, σ2/(nε2)→ 0

• X̄n converges to µ as n→∞!

• It holds also if σ2 is infinite (proof not included)

• Notice (again!) that X1, . . . ,Xn are not required to be identically distributed!
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Recovering probability of an event

• Let C = (a, b], and want to know p = P(X ∈ C )

• Run n independent measurements

• Model the results as X1, . . . ,Xn random variables

• Define the indicator variables, for i = 1, . . . , n:

Yi =

{
1 if Xi ∈ C
0 if Xi 6∈ C

• Yi ’s are independent [Propagation of independence]

• E [Yi ] = 1 · P(Xi ∈ C ) + 0 · P(Xi ∈ C ) = p

• Defined Ȳn = Y1+...+Yn
n , by the law of large numbers:

lim
n→∞

P(|Ȳn − p| > ε) = 0

• Frequency counting (e.g., in histograms) is a probability estimation method!
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The central limit theorem

• Let X1,X2, . . . ,Xn be independent r. v. for which E [Xi ] = µ and Var(Xi ) = σ2

X̄n =
X1 + X2 + . . .+ Xn

n
E [X̄n] = µ Var(X̄n) =

σ2

n

• Can we derive the distribution of X̄n?
• For Y1 ∼ N(µ1, σ

2
1) and Y2 ∼ N(µ2, σ

2
2) indepedent:

I Y1 + Y2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2) [the converse is also true (Levy Cramer thm)]

I and Y1+Y2

2 ∼ N(µ1+µ2

2 ,
σ2

1+σ2
2

22 )

• Assume X1, . . . ,Xn ∼ N(µ, σ2):

X̄n ∼ N(µ,
σ2

n
) Zn =

X̄n − µ
σ/
√
n

=
X̄n − E [X̄n]√

Var(X̄n)
n

∼ N(0, 1)

• OK, does it generalize to any distribution? Yes!
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The central limit theorem

• Some generalizations get rid of the identically distributed assumption.
• Why is it so frequent to observe a normal distribution?

I Sometime it is the average/sum effects of other variables
I This justifies the common use of it to stand in for the effects of unobserved variables

See R script and seeing-theory.brown.edu
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https://seeing-theory.brown.edu/probability-distributions/index.html#section3


Applications: approximating probabilities

• Let X1, . . . ,Xn ∼ Exp(2), for n = 100 µ = σ = 1/2

• Assume to observe realizations x1, . . . , xn such that x̄n = 1
n

∑n
i=1 xi = 0.6

• What is the probability P(X̄n ≥ 0.6) of observing such a value or a greater value?

Option A: Compute the distribution of X̄n

• Sn = X1 + . . .+ Xn ∼ Erl(n, 2)

• X̄n = Sn/n hence by Change-of-units transformation

FX̄n
(x) = FSn(n · x) and fX̄n

(x) = n · fSn(n · x)

• and then:

P(X̄n ≥ 0.6) = 1− FX̄n
(0.6) = 1− FSn(n · 0.6) = 1− pgamma(60, n, 2) = 0.0279
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Applications: approximating probabilities

• Let X1, . . . ,Xn ∼ Exp(2), for n = 100 µ = σ = 1/2

• Assume to observe realizations x1, . . . , xn such that x̄n = 1
n

∑n
i=1 xi = 0.6

• What is the probability P(X̄n ≥ 0.6) of observing such a value or a greater value?

Option B: Approximate them by using the CLT

• Zn = X̄n−µ
σ/

√
n
∼ N(0, 1) implies X̄n = σ√

n
Zn + µ ∼ N(µ, σ2/n) for n→∞

• and then:

P(X̄n ≥ 0.6) = P(
σ√
n
Zn + µ ≥ 0.6) = P(Zn ≥

0.6− µ
σ/
√
n

) ≈ 1− Φ(
0.6− 0.5

0.5/10
) == 0.0228

• also, notice X1 + . . .+ Xn =
√
nσZn + nµ ∼ N(nµ, nσ2)

See R script
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How large should n be?

• How fast is the convergence of Zn to N(0, 1)?
• The approximation might be poor when:

I n is small the myth of n ≥ 30
I Xi is asymmetric, bimodal, or discrete
I the value to test (0.6 in our example) is far from µ
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https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34906.pdf

