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Chebyshev's inequality

® Question: how much probability mass is near the expectation?

CHEBYSHEV'S INEQUALITY. For an arbitrary random variable Y
and any a > 0:

P([Y —E[Y]|>a) < al—QVar(Y) .

® Proof. (continuous case) Let u = E[Y]:

Var(Y) = /OO (y — p)?f(y)dy > / (y — w)*f(y)dy

—0o0 ly—nl>a

> / 2f(y)dy = @P(Y — 4| > a)
ly—n|>a
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Chebyshev's inequality

o “u+ a few ¢” rule: Most of the probability mass of a random variable is within a few
standard deviations from its expectation!

® Let 02 = Var(Y). For a = ko:

1 1
P(|Y —p| < ko) =1-P(]Y — p Zka)zl——k%zVar(Y):l—ﬁ
® For k =2,3,4, the RHS is 3/4,8/9,15/16

® Chebyshev's inequality is sharp when nothing is known about X, but in general it is a
large bound!

See R script
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Averages vary less

® Guessing the weight of a cow

Penelope The Cow

¢ See Francis Galton (inventor of standard deviation and much more)
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Expectation and variance of an average

® Let Xq,Xa,...,X, be independent r. v. for which E[X;] = p and Var(X;) = o2

X :X1+X2+...+Xn

n
n

EXPECTATION AND VARIANCE OF AN AVERAGE. If X, is the average
of n independent random variables with the same expectation p and
variance o2, then

_ _ 02
E [Xn] =p  and Var(Xn) = —.

n

® Notice that Xi, ..., X, are not required to be identically distributed!
See R script
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The (weak) law of large numbers

e Apply Chebyshev's inequality to X,

P(|X L Var(X) = &
(I n—ﬂ\>€)§€7 ar( n)—p

For n — 00, 7%/(ne?) — 0

THE LAW OF LARGE NUMBERS. If X, is the average of n independent
random variables with expectation x and variance o, then for any
e>0:

lim P(|X,, —p| >¢) =0.

n—oo

® X, converges to p as n — oo!

It holds also if 0% is infinite (proof not included)

Notice (again!) that Xi,..., X, are not required to be identically distributed!
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Recovering probability of an event

® Let C = (a, b], and want to know p = P(X € C)
® Run n independent measurements

® Model the results as Xi,..., X, random variables
® Define the indicator variables, for i =1,..., n:
Y, — 1 ifXjeC
10 ifXgcC
® Y,'s are independent [Propagation of independence]|

L4 E[Y,‘]:].-P(X,'E C)+0'P(Xf€ C):p
e Defined Y, = w by the law of large numbers:

lim P(|Y,—p| >€)=0

n—o0

® Frequency counting (e.g., in histograms) is a probability estimation method!
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The central limit theorem

® Let Xi,Xa,...,X, be independent r. v. for which E[X;] = p and Var(X;) = o2

s Xt Xe .+ X g _ 2
X,= 2ttt gy, Var(xn):"7

n

Can we derive the distribution of X,,?
For Y1 ~ N(u1,0%) and Y2 ~ N(pu2,03) indepedent:
> Yy + Yo~ N(pg + i, 03 + 03) [the converse is also true (Levy Cramer thm)]

3, 2
» and Y1-5Y2 ~ /\/(#142#!27 01;'202)

® Assume X1,..., X, ~ N(u,0?):
) o o g
X, ~ N(u,a—) Z, = Xn — b _ Xn E[_Xn] ~ N(0,1)
n O'/\/ﬁ Var(Xn)

n

OK, does it generalize to any distribution? Yes!
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The central limit theorem

THE CENTRAL LIMIT THEOREM. Let Xi,Xs,... be any sequence
of independent identically distributed random variables with finite
positive variance. Let p be the expected value and o2 the variance
of each of the X;. For n > 1, let Z,, be defined by

X, — .
—

Zn =0
then for any number a

lim Fy, (a) = ®(a),

n—00

where @ is the distribution function of the N(0,1) distribution. In
words: the distribution function of Z,, converges to the distribution
function ® of the standard normal distribution.

® Some generalizations get rid of the identically distributed assumption.
® Why is it so frequent to observe a normal distribution?
» Sometime it is the average/sum effects of other variables
» This justifies the common use of it to stand in for the effects of unobserved variables

See R script and seeing-theory.brown.edu
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Applications: approximating probabilities

Let Xi,..., X, ~ Exp(2), for n =100 h=0c=
Assume to observe realizations xi, ..., x, such that x, = %27:1 x; = 0.6
What is the probability P(X, > 0.6) of observing such a value or a greater value?

Option A: Compute the distribution of X,

Sp=Xi+ ...+ Xy~ Erl(n,2)

X, = Sn/n hence by Change-of-units transformation
F)-(n(x) = Fs,(n-x) and f)"(,,(x) =n-fs,(n-x)
and then:

P(X,>0.6) =1— Fg (0.6) =1— Fs,(n-0.6) = 1 — pganma(60, n, 2) = 0.0279

1/2
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Applications: approximating probabilities

Let Xi,..., X, ~ Exp(2), for n =100

Assume to observe realizations xi, ..., x, such that X, = %Z,’-’:l xi = 0.6

p=o =12

What is the probability P()_<,, > 0.6) of observing such a value or a greater value?

Option B: Approximate them by using the CLT

o Z, =%k  N(0,1) implies X, = T Zy+ p~ N(,o/n)

n= o Vi

and then:
0.6 —p
U/\/ﬁ

= g

P(Xy 2 06) = P(—

also, notice X1 + ...+ X, = /noZ, + nu ~ N(nu, no?)
See R script

Zn+ 1> 0.6) = P(Z, >

)~1-—

&(

0.6 —0.5

0.5/10

for n = oo

) == 0.0228
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How large should n be?

® How fast is the convergence of Z, to N(0,1)?
® The approximation might be poor when:

» nis small the myth of n > 30
» X; is asymmetric, bimodal, or discrete
» the value to test (0.6 in our example) is far from p
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