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Condensed observations

• Probability models governs some random phenomena
• Confronted with a new phenomenon, we want to learn about the randomness that is

associated with it
• Record observations x1,. . . , xn (a dataset)
• Can be too many: need to condense for easy visual comprehension
• Graphical methods:

I Univariate: histograms, kernel density estimates, empirical distribution functions
I Multi-variate: scatter plots
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Barplots

• For discrete data, barplots provide frequency counts for values
I approximate the p.m.f. due to the law of large numbers

• For continuous data, counting distinct values do not work. Why?

See R script
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Histograms

• Histograms provide frequency counts for ranges of values:
I Split the support to intervals, called bins:

B1, . . . ,Bm

where the length |Bi | is called the bin width
I Count observations in each bin and normalize them:

Ai =
|{j ∈ [1, n] | xj ∈ Bi}|

n
≈ P(X ∈ Bi )

I Plot bars whose area is proportional to Ai

Ai = |Bi | · Hi Hi =
|{j ∈ [1, n] | xj ∈ Bi}|

n|Bi |

See R script
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Choice of the bin width

• Bins of equal width:

Bi = (r + (i − 1)b, r + ib] for i ∈ [1,m]

where r ≤ minimum point and b is the bin width

• Scott’s normal reference rule (minimize mean integrated square error for Normal density):

b = 3.49 · s · n, where s = σ̂ =
√

1
n−1

∑n
i=1(xi − x̄)2 is the sample standard deviation
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Choice of the bin width

• b = 2 · IQR(x) · n, where IQR(x) = Q3(x)− Q1(x) [Freedman–Diaconis’ choice]
• Variable bin width

I Logarithmic binning in power laws

• Alternative: number of bins given equal bin width b:
I m = dmax xi−min xi

b e
I m = d

√
ne

I m = dlog2 ne+ 1 [Sturges’ formula]

N.B. R’s hist method take bin width as a suggestion, then it rounds bins differently
See R script
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Density estimation

• Problem with histograms: as m increases, histogram becomes unusable
• Idea: estimate density function by putting a pile (of sand) around each observation
• Kernels state the shape of the pile

I Epanechnikov 3
4 (1− u2) for −1 ≤ u ≤ 1

I Triweight 35
32 (1− u2)3 for −1 ≤ u ≤ 1

I Normal 1√
2π
e−

1
2 u

2

for −∞ < u <∞
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Kernel density estimation (KDE)

A Kernel is a function K : R→ R such that

• K is a probability density, i.e., K (u) ≥ 0 and
∫∞
−∞ K (u)du = 1

• K is symmetric, i.e., K (−u) = K (u)

• [sometime, it is required that] K (u) = 0 for |u| > 1

A bandwidth h is a scaling factor over the support of K (from [−1, 1] to [−h, h])

• if X ∼ K , then X
h ∼

1
hK (uh ) [Change-of-Unit rule]
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Kernel density estimation (KDE)

Let x1, . . . , xn be the observations
• K scaled and shifted at xi is 1

hK (u−xih ), with support [xi − h, xi + h]

The kernel density estimate is defined as:

fn,h(u) =
1

nh

n∑
i=1

K (
u − xi

h
)

• It is a probability density! [Prove it]

See R script
9 / 13



KDE vs histograms

• KDE has less variability!
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Choice of the bandwidth

• Note. The choice of the kernel is not critical: different kernels give similar results

• A problem. The choice of the bandwith h is critical (and it may depend on the kernel)

• Mean Integrated Squared Error (MISE) is

E [

∫ ∞
−∞

(fn,h(u)− f (u))2du] =

∫ ∫ ∞
−∞

(fn,h,x(u)− f (u))2(f (x))ndudx

where f (x) is the true density function and observations are independent

• For f (x) being the Normal density, the MISE is minimized for

h = (
4

3
)
1
5 · s · n−

1
5 [Normal reference method]

See R script
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Kernel density estimation (KDE)

• A problem. The choice of the bandwith h is critical (and it may depend on the kernel)
• Automatic selection of h

I Plug-in selectors
I Cross-validation selectors

• Another problem. When the support is finite, symmetric kernels give meaningless results
• Boundary kernels

I Kernel (truncation) and renormalization
I Linear (combination) kernel
I Beta boundary kernels
I Reflective kernels (density=0 at boundaries)

See R script
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The empirical CDF

• Empirical cumulative distribution function (CDF):

Fn(x) =
|{i ∈ [1, n] | xi ≤ x}|

n

• Empirical complementary cumulative distribution function (CCDF):

F̄n(x) = 1− Fn(x)

See R script
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