Statistical Methods for Data Science Lesson 11 - Graphical summaries

Salvatore Ruggieri

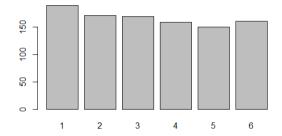
Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Condensed observations

- Probability models governs some random phenomena
- Confronted with a new phenomenon, we want to learn about the randomness that is associated with it
- Record observations x_1, \ldots, x_n (a dataset)
- Can be too many: need to condense for easy visual comprehension
- Graphical methods:
 - ► Univariate: histograms, kernel density estimates, empirical distribution functions
 - Multi-variate: scatter plots

Barplots

- For discrete data, barplots provide frequency counts for values
 - ► approximate the p.m.f. due to the law of large numbers



• For continuous data, counting distinct values do not work. Why?

Histograms

- Histograms provide frequency counts for ranges of values:
 - Split the support to intervals, called *bins*:

$$B_1,\ldots,B_m$$

where the length $|B_i|$ is called the *bin width*

• Count observations in each bin and normalize them:

$$A_i = \frac{|\{j \in [1, n] \mid x_j \in B_i\}|}{n} \approx P(X \in B_i)$$

Plot bars whose area is proportional to A_i

$$A_i = |B_i| \cdot H_i$$
 $H_i = \frac{|\{j \in [1, n] \mid x_j \in B_i\}|}{n|B_i|}$

Choice of the bin width

• Bins of equal width:

$$B_i = (r+(i-1)b,r+ib] \hspace{1em} ext{for} \hspace{1em} i \in [1,m]$$

where $r \leq \min p$ oint and b is the bin width

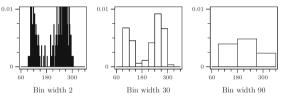


Fig. 15.2. Histograms of the Old Faithful data with different bin widths.

• Scott's normal reference rule (minimize mean integrated square error for Normal density):

$$b = 3.49 \cdot s \cdot n$$
, where $s = \hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$ is the sample standard deviation

Choice of the bin width

- $b = 2 \cdot IQR(x) \cdot n$, where $IQR(x) = Q_3(x) Q_1(x)$
- Variable bin width
 - Logarithmic binning in power laws
- Alternative: number of bins given equal bin width b:

•
$$m = \lceil \frac{\max x_i - \min x_i}{b} \rceil$$

• $m = \lceil \sqrt{n} \rceil$

•
$$m = \lceil \log_2 n \rceil + 1$$

[Freedman–Diaconis' choice]

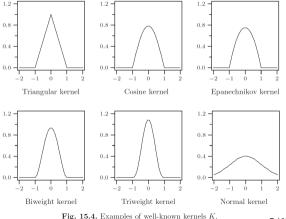
[Sturges' formula]

N.B. R's hist method take bin width as a suggestion, then it rounds bins differently See R script

Density estimation

- Problem with histograms: as *m* increases, histogram becomes unusable
- Idea: estimate density function by putting a pile (of sand) around each observation
- Kernels state the shape of the pile
 - Epanechnikov $\frac{3}{4}(1-u^2)$ for $-1 \le u \le 1$
 - Triweight $rac{35}{32}(1-u^2)^3$ for $-1\leq u\leq 1$

▶ Normal
$$\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}u^2}$$
 for $-\infty < u < \infty$

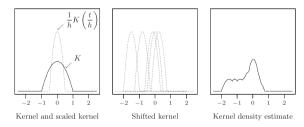


Kernel density estimation (KDE)

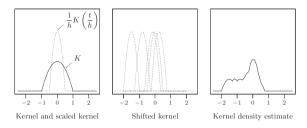
A Kernel is a function $K : \mathbb{R} \to \mathbb{R}$ such that

- K is a probability density, i.e., $K(u) \ge 0$ and $\int_{-\infty}^{\infty} K(u) du = 1$
- K is symmetric, i.e., K(-u) = K(u)
- [sometime, it is required that] K(u) = 0 for |u| > 1
- A bandwidth h is a scaling factor over the support of K (from [-1,1] to [-h,h])

• if
$$X \sim K$$
, then $\frac{X}{h} \sim \frac{1}{h}K(\frac{u}{h})$ [Change-of-Unit rule]



Kernel density estimation (KDE)



Let x_1, \ldots, x_n be the observations

• *K* scaled and shifted at x_i is $\frac{1}{h}K(\frac{u-x_i}{h})$, with support $[x_i - h, x_i + h]$ The kernel density estimate is defined as:

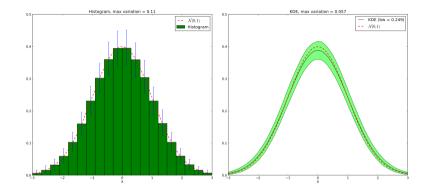
$$f_{n,h}(u) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{u-x_i}{h})$$

• It is a probability density!

See R script

[Prove it]

KDE vs histograms



• KDE has less variability!

Choice of the bandwidth

- Note. The choice of the kernel is not critical: different kernels give similar results
- A problem. The choice of the bandwith h is critical (and it may depend on the kernel)
- Mean Integrated Squared Error (MISE) is

$$E[\int_{-\infty}^{\infty} (f_{n,h}(u) - f(u))^2 du] = \int \int_{-\infty}^{\infty} (f_{n,h,x}(u) - f(u))^2 (f(x))^n du dx$$

where f(x) is the true density function and observations are independent

• For f(x) being the Normal density, the MISE is minimized for

$$h = (rac{4}{3})^{rac{1}{5}} \cdot s \cdot n^{-rac{1}{5}}$$
 [Normal reference method]

Kernel density estimation (KDE)

- A problem. The choice of the bandwith h is critical (and it may depend on the kernel)
- Automatic selection of *h*
 - Plug-in selectors
 - Cross-validation selectors
- Another problem. When the support is finite, symmetric kernels give meaningless results
- Boundary kernels
 - Kernel (truncation) and renormalization
 - Linear (combination) kernel
 - Beta boundary kernels
 - Reflective kernels (density=0 at boundaries)

The empirical CDF

• Empirical cumulative distribution function (CDF):

$$F_n(x) = \frac{|\{i \in [1, n] \mid x_i \leq x\}|}{n}$$

• Empirical complementary cumulative distribution function (CCDF):

$$\bar{F}_n(x) = 1 - F_n(x)$$