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Example: number of German tanks

® Tanks' ID drawn at random without replacement from 1,...  N. Objective: estimate N.
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Example: number of German tanks

® |et x1,...,x, be the observed ID’s
® Eg,h61,19,56,24,16 with n=5
® They are realizations of Xi, ..., X, draws without replacement from 1,..., N

» Xi,...,X, is not a random sample, as they are not independent!

» The marginal distribution is X; ~ U(1, N) [prove it, or see Sect. 9.3]
e Estimator based on the mean

> we have:

EI%] = E[X] = "0t

» We can define an estimator _
T =2X,—-1

» Ty is unbiased: E[T;] =2E[X,]—1=N
» Eg., t; =2(61+19+56+24+16)/5-1=169.4
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Example: number of German tanks

® |et x1,...,x, be the observed ID’s

® Fg.,61,19,56,24,16 with n=5

e Estimator based on the maximum
» Let M, = max{Xy,..., X,}

» We have: [see Sect. 20.1]
N-+1
E[M,] =
[M;] o
» We can define an estimator 1
T, = ”J; M, —1

> T, is unbiased: E[T;] = ZLE[M,] —1= N
» E.g., t, = 6/5max {61,19,56,24,16} — 1 = 72.2

See R script
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So far, estimators were naturally derived from parameter definition

[
® A general principle to derive estimators will be shown today
® Example
Table 21.1. Observed numbers of cycles up to pregnancy.
Number of cycles 1 2 3 4 5 6 78 9 10 11 12 >12
Smokers 20 16 17 4 3 9 4 5 1 1 1 3 7
Nonsmokers 198 107 55 38 18 22 7 9 5 3 6 6 12
® Assume that the data is generated from geometric distributions

P(X;=k)=(1—-p)<1p
[parametric inference]

® What is an estimator for p?
» E.g., since p=P(X; =1), we could use S = M and show E[S]=p
» p=29/100 for smokers, and p = 198/486 = 0.41 for non-smokers

» But we did not use all of the available data!
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The maximum likelihood principle

The maximum likelihood principle

Given a dataset, choose the parameter(s) of interest in such a way that the data
are most likely.

Reconsider the example:

Table 21.1. Observed numbers of cycles up to pregnancy.

Number of cycles 1 2 3 4 5 8 9 10 11 12 >12

6
9

Smokers 20 16 17 4 3 11 1 3 7

7
4 5
Nonsmokers 198 107 55 38 18 22 7 9 5 3 6 6 12

For k=1,...,12, P(X; = k) = (1 — p)*"1p. Moreover, P(X; > 12) = (1 — p)'?
Since the X;'s are independent, we can write the probability of observing the dataset as:

Lp)=C-P(X;=1)2°-P(X;=2)1..... P(X; = 12)*- P(X; > 12)" = Cp*(1 — p)3??

ML principle: choose p = argmax,L(p)
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® ML principle: choose p = argmax,L(p) = argmaxPCp93(1 — p)3?2

* L'(p) = C(93p%(1 — p)*** — 322p*(1 — p)**) = Cp**(1 — p)***(93 — 415p)
e ['(p)=0forp=0o0rp=1or p=93/415=10.224

® ML estimate is argmax,L(p) = 0.224 < 0.41 (estimate using S)

® Alternative strategy for maximization

argmax,L(p) = argmax, log L(p)

® logL(p) =log C +93log p + 322log (1 — p)
* log'L(p) = T = %5
e log' L(p) = 0 for 322p = 93(1 — p), i.e.,, p=93/(322 + 93) = 0.224

See R script
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Likelihood and log-likelihood

® |et xq,...,Xp be realization of a random sample Xi,..., X,

Likelihood and log-likelihood functions

Let fy(x) be the density/p.m.f. of the distribution of X!s, with parameter §. The
likelihood function is:

LO)=P(Xi=x1,...,Xq =) = Hfg(X,)
and the log-likelihood function is: . =1
£(0) = log L(0) = " log fy(x;)

i=1

MAXIMUM LIKELIHOOD ESTIMATES. The mazimum likelihood es-
timate of 0 is the value t = h(xy,x9,...,x,) that maximizes the

likelihood function L(6). The corresponding random variable

is called the mazimum likelihood estimator for 6.
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Example: MLE of exponential distribution

® Random sample of Exp()\) E[X] =1/a
® Since f(x) = Ae™ for x > 0:

n

((A) = (log A = Axj) = nlog A = A(x1 + ... + x,) = n(log A — A%,)
i=1

I(N) = 0iff n(1/x—x,) =0 iff A = 1/x,
T =1/X, is the MLE of X for a Exp(\)-distributed random sample
It is biased!: E[T] > 1/E[X,] = A [Jensen'’s inequality]
Exercise at home
» show that X, is an unbiased MLE of 6 for a Exp(1/60)-distributed random sample
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Example: upper point of a uniform distribution

® Dataset: x; = 0.98,x, = 1.57,x3 = 0.31 from U(0, ) for unknown 6 > 0
® fy(x) =1/6 for 0 < x < 6 and fy(x) = 0 otherwise

L0) = ) os) = {

0.2 4

if & > max{xq,x2,x3} = 1.57
otherwise

0.1+

0-

I T T T
0 031 0.98 1.57

® In general, MLE estimator is max{Xy, ..., Xy}
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Example: MLE of normal distribution

® Random sample of N(u,o?)
® MLE of § = (u,0?) where f, 52(x) = e 3(31) [we work on o, not on o]
1
U(p,0%) = —nlogo — nlogv2m — 552 iz;(x; — u)?
® Partial derivatives:
n
ToH.0) = (=) o) = 5 <012 SRS )

Partial derivatives at 0 for 11 = X, and o2 =151 (x;—p)? [prove it is a maximum]
MLE estimators y = X, (unbiased) and 02 = £ 37 | (X; — u)? (biased)
See R script
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Loss functions (to be minimized)

® Negative log-likelihood (nLL)
nLL(#) = —¢(0)

® Akaike information criterion (AIC), balances model fit against model simplicity
AIC(0) = 2|0] — 2¢(0)
® Bayesian information criterion (BIC), stronger balances over model simplicity

BIC(0) = |0] log n — 2¢(6)
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Properties of MLE estimators

® MLE estimators can be biased, but under mild assumptions, they are asyntotically
unbiased! [Asyntotic unbiasedness|

lim E[T,] =6
n—o0

® If T is the MLE estimator of 6 and g() is an invertible function, then g(T) is the MLE
estimator of g(#) [Invariance principle]

» E.g., MLE of o for normal data is /2 37 (x; — p1)?
» but, E[T] = 0 does NOT necessarily imply E[g(T)] = g(?)
> See also Exercise at home

® Under mild assumptions, MLE estimators have asymptotically the smallest variance
among unbiased estimators [Asymptotic minimum variance|
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Minimum Variance Unbiased Estimators (MVUE)

e Consider a density function fp(x)

Score function and Fisher information

The score function is the random variable:

S(0) = 24(6) = % log ()

The Fisher information is the variance of it:
1(0) = Var(5(0))

v

Cramér-Rao’s bound for unbiased estimator T (under some assumptions):
1
Var(T) >
1(6)

Efficiency of unbiased estimator is e(T) = 1/(Var(T)I(0))
An unbiased estimator T such that Var(T)=1/I(

0) (or e(T) =1) is called a MVUE

Since E[S(0)] =0, 1(8) = E[S(9)?] [prove it or see notesl.pdf]
Since X;'s are i.i.d, 1(0) = E[S(0)?] = nE[(Z log fy(X))?] [prove it or see notesl.pdf]
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lix—p

® Normal distribution and p parameter: f,(x) = —% e 2051

oV 2

e Unbiased MLE estimator of yuis T = X, = (X + ... + X,)/n.

® The Fisher information is:

1(0)

nE [((fu log £,,(X))?]

B[Sy

ZE[(X = n)?]

U—n4Var(X) - %02 - % - Vart)_(,,)

where the last equality follows because for i.i.d. random variables Var(X,) = o2/n.

® By taking the reciprocals: Var(X,) =1/1(6)

® Hence X, is a MVUE of u
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