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Simple linear regression model

• Regression line: y = α + βx with intercept α and slope β
• Least Square Estimators: α̂ and β̂ and σ̂2

• Unbiasedness: E [α̂] = α and E [β̂] = β and E [σ̂2] = σ2

• Moreover: Var(α̂) = σ2(1/n + x̄2/SXX ) and Var(β̂) = σ2/SXX

• Standard errors (estimates of
√
Var(α̂) and

√
Var(β̂)):

se(α̂) = σ̂

√
(

1

n
+

x̄2n
SXX

) se(β̂) =
σ̂√

SXX
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Standard error of fitted values (predictions)

• For a given x0, the the estimator Ŷ = α̂ + β̂x0 has expectation E [Ŷ ] = α + βx0
• Hence, ŷ = α + βx0, is the best estimate for the fitted value

• Variance of Ŷ is: [See notes2.pdf]

Var(Ŷ ) = σ2(
1

n
+

(x̄n − x0)2

SXX
)

• The standard error of the fitted value is then the estimate:

se(Ŷ ) = σ̂

√
(

1

n
+

(x̄n − x0)2

SXX
)

where

SXX =
n∑
1

(xi − x̄n)2 σ̂2 =
1

n − 2

n∑
1

(yi − α̂− β̂xi )2

See R script
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Weighted Least Squares and simple polynomial regression

• Weighted Simple Regression

S(α, β) =
n∑

i=1

(yi − α− βxi )2wi

I wi is the weight (or importance) of observation (xi , yi )
I For integer weights, it is the same as replicating instances

• Polynomial Simple Regression

S(α, β) =
n∑

i=1

(yi − α− β1xi − β2x2i − . . .− βkxki )2

I Yi = α + β1xi + β2x
2
i + . . .+ βkx

k
i + Ui for i = 1, 2, . . . , n

See R script
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Non-linear regression and transformably linear functions

• Non-linear Simple Regression, for a generic function f ()

• Yi = f (α, β, xi ) + Ui for i = 1, 2, . . . , n

S(α, β) =
n∑

i=1

(yi − f (α, β, xi ))2

• min S(α, β) maybe without a closed form
I use numeric search of the minimum (which may fail to find!), e.g., gradient descent

• Some f () can be favourably transformed, e.g., f (α, β, xi ) = αxβi [Linearization]

• Solve logYi = logα + β log xi + Ui and then by exponentiation:

Yi = αxβi e
Ui

where the error term is a multiplicative factor (must be checked with residual analysis)

See R script
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Multiple linear regression

• Multivariate dataset:

(x11 , x
2
1 , . . . , x

k
1 , y1), . . . , (x1n , x

2
n , . . . , x

k
n , yn)

• Yi = α + β1x
1
i + . . .+ βkx

k
i + Ui

• In vector terms:
I Yi = x i · β + Ui , where βT = (α, β1, . . . , βk) and x i = (1, x1i , . . . , x

k
i )

I Y = X · β + U , where Y = (Y1, . . . ,Yn), U = (U1, . . . ,Un), and X = (x1, . . . , xn)
• Ordinary Least Square Estimation (OLS):

S(β) =
n∑

i=1

(yi − x i · β)2 = ‖y − X · β‖2 β̂ = argminβS(β) = (XT · X )−1 · XT · y

where y = (y1, . . . , yn) and ‖(v1, . . . , vn)‖ =
√∑n

i=1 v
2
i is the Euclidian norm

• Meaning of βi : change of Y due to a unit change in xi all the xj with j 6= i unchanged!
• It is the best (ie., smallest MSE) linear unbiased estimator [Gauss-Markov Thm.]

See R script
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Omitted variable bias

• Yi = α + βxi + Ui

• Assume there exists a third (unknown) variable Z such that:
I X and Z are correlated
I Y is determined by Z

• Yi = α + β1xi + β2zi + U ′i but we do not know zi ’s

• E [Ui ] = E [β2zi + U ′i ] = β2zi + E [U ′i ] = β2zi 6= 0

• The problem cannot be solved by increasing the number of observations!

See R script
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Multi-collinearity and variance inflation factors

• Multicollinearity : two or more independent variables (regressors) are strongly correlated.
• Yi = α + β1x

1
i + β2x

2
i + Ui

• It can be shown that for j ∈ {1, 2}:

Var(β̂j) =
1

(1− r2)
· σ2

SXX j

where r = cor(x1, x2), σ2 = Var(Ui ) and SXX j =
∑n

1(x ji − x̄n)2

• Correlation between regressors increases the variance of the estimators
• In general, for more than 2 variables:

Var(β̂j) =
1

(1− R2
j )
· σ2

SXX j

where R2
j is the coefficient of determination (R2) in the regression of xj from all other xi ’s.

• The term 1/(1−R2
j ) is called variance inflation factor

See R script
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Variable selection

• Recall: when Ui ∼ N(0, σ2), we have Yi ∼ N(x i · β, σ2), hence we can apply MLE

• Log-likelihood is `(β) =
∑n

i=1 log ( 1
σ
√
2π
e
− 1

2

(
yi−x i ·β

σ2

)2

)

• Akaike information criterion (AIC), balances model fit against model simplicity

AIC (β) = 2|β| − 2`(β)

• stepAIC(model, direction=”backward”) algorithm
1. S = {x1, . . . , xk}
2. b = AIC (S)
3. repeat

3.1 x = argminx∈SAIC(S \ {x})
3.2 v = AIC(S \ {x})
3.3 if v < b then S , b = S \ {x}, v

4. until no change in S
5. return S

See R script
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Regularization methods

β̂ = argminβS(β)

• Ordinary Least Square Estimation (OLS):

S(β) = ‖y − X · β‖2

where ‖(v1, . . . , vn)‖ =
√∑n

i=1 v
2
i is the Euclidian norm

• Ridge regression:
S(β) = ‖y − X · β‖2 + λ2‖β‖2

where ‖β‖2 = α2 +
∑k

i=1 β
2
i .

I Notice that λ2 is not in the parameters of the minimization problem!
I Variables with minor contribution have their coefficients close to zero
I It improves prediction error by reducing overfitting through a bias-variance trade-off
I It is not a parsimonious method, i.e., does not reduce features
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Regularization methods
• Lasso (least absolute shrinkage and selection operator) regression:

S(β) = ‖y − X · β‖2 + λ1‖β‖1
where ‖β‖1 = |α|+

∑k
i=1 |βi |.

I Notice that λ1 is not in the parameters of the minimization problem!
I Variable with minor contribution have their coefficients equal to zero
I It improves prediction error by reducing overfitting through a bias-variance trade-off
I It is a parsimonious method, i.e., does reduce features

• Penalized linear regression:

S(β) = ‖y − X · β‖2 + λ2‖β‖2 + λ1‖β‖1
I Both Ridge and Lasso regularization parameters

• How to solve the minimization problems? Lagrange multiplier method or reduction to
Support Vector Machine learning
• How to find the best λ1 and/or λ2? Cross-validation!

See R script
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https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Elastic_net_regularization
https://en.wikipedia.org/wiki/Elastic_net_regularization


Multivariate linear regression

• The multivariate linear model accommodates two or more dependent variables

Y = Xβ + U

where
I Y is n ×m: n observations, m dependent variables
I X is n × (k + 1): n observations, k independent variables +1 constants
I β is (k + 1)×m: k parameters β +1 parameter α for each of the m dependent variables
I U is n ×m: n observations, m error terms

• It is not just a collection of m multiple linear regressions

• Errors in rows (observations) of U are independent, as in a single multiple linear regression
• Errors in columns (dependent variables) are allowed to be correlated.

I E.g., errors of plasma level and amitriptyline due to usage of drugs
I Hence, coefficients from the models covary! More later on confidence intervals for coefficients

See R script
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Towards logistic regression

• Consider a bivariate dataset
(x1, y1), . . . , (xn, yn)

where yi ∈ {0, 1}, i.e., Yi i binary variable

• Using directly use linear regression:

Yi = α + βxi + Ui

results in poor performances (R2)

See R script
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Towards logistic regression

• Consider a bivariate dataset
(x1, y1), . . . , (xn, yn)

where yi ∈ {0, 1}, i.e., Yi i binary variable

• Group by x values:
(d1, f1), . . . , (dm, fm)

where d1, . . . , dm are the distinct values of x1, . . . , xn and fi is the fraction of 1’s:

fi =
|{j ∈ [1, n] | xj = di ∧ yj = 1}|
|{j ∈ [1, n] | xj = di}|

and the linear model (we continue using xi but it should be di ):

Fi = α + βxi + Ui

See R script
14 / 17



Towards logistic regression

• Rather than fi , we model the logit of fi

logit(Fi ) = α + βxi + Ui

where logit and its inverse (logistic function) are:

logit(p) = log
p

1− p
inv .logit(x) =

ex

1 + ex
=

1

1 + e−x

See R script
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Logistic regression and generalized linear models

• Since Yi ’s are binary, Fi = P(Yi = 1|X = xi ) ∼ Ber(fi ), and Ui is not necessary

logit(Fi ) = α + βxi

and then Fi = P(Yi = 1|X = xi ) = inv .logit(α + βxi ) = eα+βxi

1+eα+βxi

• Linear regression predict the value Yi

• Logistic regression predict the probability P(Yi = 1)
• Generalized linear models:

I family = distribution + link function
I E.g., Binomial + logit for logistic regression
I For Yi ∈ {0, 1}, actually Bernoulli + logit [Binary logistic regression]

• Since distribution is known, MLE can be adopted for estimating α and β:

`(α, β) =
n∑

i=1

[yi log (inv .logit(α + βxi )) + (1− yi ) log (1− inv .logit(α + βxi ))]

See R script
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Elastic net logistic regression

• Penalized linear regression minimizes:

‖y − X · β‖2 + λ2‖β‖2 + λ1‖β‖1

I λ1 = 0 is the Ridge penalty
I λ2 = 0 is the Lasso penalty

• Elastic net regularization for logistic regression minimizes:

−`(β) + λ

(
(1− α)

2
‖β‖2 + α‖β‖1

)
I α = 0 is the Ridge penalty
I α = 1 is the Lasso penalty
I λ is to be found, e.g., by cross-validation

See R script
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