Statistical Methods for Data Science Lesson 16 - Multiple, non-linear, and logistic regression.

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it SIMPLE LINEAR REGRESSION MODEL. In a simple linear regression model for a bivariate dataset $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$, we assume that x_1, x_2, \ldots, x_n are nonrandom and that y_1, y_2, \ldots, y_n are realizations of random variables Y_1, Y_2, \ldots, Y_n satisfying

$$Y_i = \alpha + \beta x_i + U_i \quad \text{for } i = 1, 2, \dots, n,$$

where U_1, \ldots, U_n are *independent* random variables with $E[U_i] = 0$ and $Var(U_i) = \sigma^2$.

- Regression line: $y = \alpha + \beta x$ with intercept α and slope β
- Least Square Estimators: $\hat{\alpha}$ and $\hat{\beta}$ and $\hat{\sigma^2}$
- Unbiasedness: $E[\hat{\alpha}] = \alpha$ and $E[\hat{\beta}] = \beta$ and $E[\hat{\sigma^2}] = \sigma^2$
- Moreover: $Var(\hat{\alpha}) = \sigma^2(1/n + \bar{x}^2/SXX)$ and $Var(\hat{\beta}) = \sigma^2/SXX$
- Standard errors (estimates of $\sqrt{Var(\hat{\alpha})}$ and $\sqrt{Var(\hat{\beta})}$):

$$se(\hat{\alpha}) = \hat{\sigma}\sqrt{(\frac{1}{n} + \frac{\bar{x}_n^2}{SXX})}$$
 $se(\hat{\beta}) = \frac{\hat{\sigma}}{\sqrt{SXX}}$

Standard error of fitted values (predictions)

- For a given x_0 , the the estimator $\hat{Y} = \hat{\alpha} + \hat{\beta}x_0$ has expectation $E[\hat{Y}] = \alpha + \beta x_0$
- Hence, $\hat{y} = \alpha + \beta x_0$, is the best estimate for the fitted value
- Variance of \hat{Y} is:

$$Var(\hat{Y}) = \sigma^2(rac{1}{n} + rac{(ar{x}_n - x_0)^2}{SXX})$$

• The standard error of the fitted value is then the estimate:

$$se(\hat{Y}) = \hat{\sigma}\sqrt{(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX})}$$

where

$$SXX = \sum_{1}^{n} (x_i - \bar{x}_n)^2$$
 $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{1}^{n} (y_i - \hat{\alpha} - \hat{\beta}x_i)^2$

See R script

[See notes2.pdf]

Weighted Least Squares and simple polynomial regression

• Weighted Simple Regression

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2 w_i$$

- w_i is the weight (or importance) of observation (x_i, y_i)
- ► For integer weights, it is the same as replicating instances
- Polynomial Simple Regression

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta_1 x_i - \beta_2 x_i^2 - \ldots - \beta_k x_i^k)^2$$

•
$$Y_i = \alpha + \beta_1 x_i + \beta_2 x_i^2 + \ldots + \beta_k x_i^k + U_i$$
 for $i = 1, 2, \ldots, n$
See R script

Non-linear regression and transformably linear functions

- Non-linear Simple Regression, for a generic function f()
- $Y_i = f(\alpha, \beta, x_i) + U_i$ for i = 1, 2, ..., n

$$S(\alpha,\beta) = \sum_{i=1}^{n} (y_i - f(\alpha,\beta,x_i))^2$$

- min $S(\alpha, \beta)$ maybe without a closed form
 - ▶ use numeric search of the minimum (which may fail to find!), e.g., gradient descent
- Some f() can be favourably transformed, e.g., $f(\alpha, \beta, x_i) = \alpha x_i^{\beta}$ [Linearization]
- Solve log $Y_i = \log \alpha + \beta \log x_i + U_i$ and then by exponentiation:

$$Y_i = \alpha x_i^\beta e^{U_i}$$

where the error term is a multiplicative factor (must be checked with residual analysis) See R script

Multiple linear regression

Multivariate dataset:

$$(x_1^1, x_1^2, \ldots, x_1^k, y_1), \ldots, (x_n^1, x_n^2, \ldots, x_n^k, y_n)$$

• $Y_i = \alpha + \beta_1 x_i^1 + \ldots + \beta_k x_i^k + U_i$

- In vector terms:
 - $Y_i = \mathbf{x}_i \cdot \mathbf{\beta} + U_i$, where $\mathbf{\beta}^T = (\alpha, \beta_1, \dots, \beta_k)$ and $\mathbf{x}_i = (1, x_i^1, \dots, x_i^k)$
 - ► $\mathbf{Y} = \mathbf{X} \cdot \boldsymbol{\beta} + \boldsymbol{U}$, where $\mathbf{Y} = (Y_1, \dots, Y_n)$, $\boldsymbol{U} = (U_1, \dots, U_n)$, and $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$

Ordinary Least Square Estimation (OLS):

$$S(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i \cdot \boldsymbol{\beta})^2 = \|\boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{\beta}\|^2 \qquad \hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} S(\boldsymbol{\beta}) = (\boldsymbol{X}^T \cdot \boldsymbol{X})^{-1} \cdot \boldsymbol{X}^T \cdot \boldsymbol{y}$$

where $\mathbf{y} = (y_1, \dots, y_n)$ and $\|(v_1, \dots, v_n)\| = \sqrt{\sum_{i=1}^n v_i^2}$ is the Euclidian norm

- Meaning of β_i : change of Y due to a unit change in x_i all the x_i with $j \neq i$ unchanged! Gauss-Markov Thm.
- It is the best (ie., smallest MSE) linear unbiased estimator

Omitted variable bias

- $Y_i = \alpha + \beta x_i + U_i$
- Assume there exists a third (unknown) variable Z such that:
 - X and Z are correlated
 - Y is determined by Z
- $Y_i = \alpha + \beta_1 x_i + \beta_2 z_i + U'_i$ but we do not know z_i 's
- $E[U_i] = E[\beta_2 z_i + U'_i] = \beta_2 z_i + E[U'_i] = \beta_2 z_i \neq 0$
- The problem **cannot** be solved by increasing the number of observations!

Multi-collinearity and variance inflation factors

- Multicollinearity: two or more independent variables (regressors) are strongly correlated.
- $Y_i = \alpha + \beta_1 x_i^1 + \beta_2 x_i^2 + U_i$
- It can be shown that for $j \in \{1, 2\}$:

$$\mathsf{Var}(\hat{eta}_j) = rac{1}{(1-r^2)} \cdot rac{\sigma^2}{\mathsf{SXX}_j}$$

where $r = cor(x^1, x^2)$, $\sigma^2 = Var(U_i)$ and $SXX_j = \sum_{i=1}^{n} (x_i^j - \bar{x}_n)^2$

- Correlation between regressors increases the variance of the estimators
- In general, for more than 2 variables:

$$extsf{Var}(\hat{eta}_j) = rac{1}{(1-R_j^2)} \cdot rac{\sigma^2}{ extsf{SXX}_j}$$

where R_j^2 is the coefficient of determination (R^2) in the regression of x_j from all other x_i 's.

• The term $1/(1-R_j^2)$ is called variance inflation factor

Variable selection

- Recall: when $U_i \sim N(0, \sigma^2)$, we have $Y_i \sim N(\mathbf{x}_i \cdot \boldsymbol{\beta}, \sigma^2)$, hence we can apply MLE
- Log-likelihood is $\ell(\beta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y_i x_i \cdot \beta}{\sigma^2}\right)^2}\right)$
- Akaike information criterion (AIC), balances model fit against model simplicity

$$AIC(eta) = 2|eta| - 2\ell(eta)$$

- stepAIC(model, direction="backward") algorithm
 - 1. $S = \{x^1, ..., x^k\}$ 2. b = AIC(S)

$$2. \ b = AIC(S)$$

- 3. repeat
 - 3.1 $x = \operatorname{argmin}_{x \in S} AIC(S \setminus \{x\})$ 3.2 $v = AIC(S \setminus \{x\})$ 3.3 if v < b then $S, b = S \setminus \{x\}, v$
- 4. until no change in S
- 5. return S

Regularization methods

$$\hat{oldsymbol{eta}} = \operatorname{argmin}_{oldsymbol{eta}} S(oldsymbol{eta})$$

• Ordinary Least Square Estimation (OLS):

$$S(oldsymbol{eta}) = \|oldsymbol{y} - oldsymbol{X} \cdot oldsymbol{eta}\|^2$$

where $\|(v_1,\ldots,v_n)\| = \sqrt{\sum_{i=1}^n v_i^2}$ is the Euclidian norm

• Ridge regression:

$$S(\boldsymbol{eta}) = \| \boldsymbol{y} - \boldsymbol{X} \cdot \boldsymbol{eta} \|^2 + \lambda_2 \| \boldsymbol{eta} \|^2$$

where $\|\beta\|^2 = \alpha^2 + \sum_{i=1}^k \beta_i^2$.

- Notice that λ_2 is not in the parameters of the minimization problem!
- Variables with minor contribution have their coefficients close to zero
- It improves prediction error by reducing overfitting through a bias-variance trade-off
- It is not a parsimonious method, i.e., does not reduce features

Regularization methods

• Lasso (least absolute shrinkage and selection operator) regression:

$$S(oldsymbol{eta}) = \|oldsymbol{y} - oldsymbol{X} \cdot oldsymbol{eta}\|^2 + \lambda_1 \|oldsymbol{eta}\|_1$$

where $\|\beta\|_{1} = |\alpha| + \sum_{i=1}^{k} |\beta_{i}|.$

- ▶ Notice that λ_1 is not in the parameters of the minimization problem!
- ► Variable with minor contribution have their coefficients **equal** to zero
- It improves prediction error by reducing overfitting through a bias-variance trade-off
- ► It is a parsimonious method, i.e., does reduce features
- Penalized linear regression:

$$\mathcal{S}(oldsymbol{eta}) = \|oldsymbol{y} - oldsymbol{X} \cdot oldsymbol{eta}\|^2 + \lambda_2 \|oldsymbol{eta}\|^2 + \lambda_1 \|oldsymbol{eta}\|_1$$

- Both Ridge and Lasso regularization parameters
- How to solve the minimization problems? Lagrange multiplier method or reduction to Support Vector Machine learning
- How to find the best λ_1 and/or λ_2 ? Cross-validation!

Multivariate linear regression

• The multivariate linear model accommodates two or more dependent variables

 $Y = X\beta + U$

where

- **Y** is $n \times m$: *n* observations, *m* dependent variables
- **X** is $n \times (k+1)$: *n* observations, *k* independent variables +1 constants
- β is $(k + 1) \times m$: k parameters $\beta + 1$ parameter α for each of the m dependent variables
- **U** is $n \times m$: *n* observations, *m* error terms
- It is **not** just a collection of *m* multiple linear regressions
- Errors in rows (observations) of **U** are independent, as in a single multiple linear regression
- Errors in columns (dependent variables) are allowed to be correlated.
 - ► E.g., errors of plasma level and amitriptyline due to usage of drugs
 - ► Hence, coefficients from the models covary! More later on confidence intervals for coefficients

Towards logistic regression

• Consider a bivariate dataset

$$(x_1, y_1), \ldots, (x_n, y_n)$$

where $y_i \in \{0, 1\}$, i.e., Y_i i binary variable

• Using directly use linear regression:

$$Y_i = \alpha + \beta x_i + U_i$$

results in poor performances (R^2)

Towards logistic regression

• Consider a bivariate dataset

$$(x_1, y_1), \ldots, (x_n, y_n)$$

where $y_i \in \{0, 1\}$, i.e., Y_i i binary variable

• Group by *x* values:

$$(d_1, f_1), \ldots, (d_m, f_m)$$

where d_1, \ldots, d_m are the distinct values of x_1, \ldots, x_n and f_i is the fraction of 1's:

$$f_i = \frac{|\{j \in [1, n] \mid x_j = d_i \land y_j = 1\}|}{|\{j \in [1, n] \mid x_j = d_i\}|}$$

and the linear model (we continue using x_i but it should be d_i):

$$F_i = \alpha + \beta x_i + U_i$$

Towards logistic regression

• Rather than f_i , we model the logit of f_i

$$logit(F_i) = \alpha + \beta x_i + U_i$$

where logit and its inverse (logistic function) are:

$$logit(p) = log \frac{p}{1-p}$$
 $inv.logit(x) = \frac{e^{x}}{1+e^{x}} = \frac{1}{1+e^{-x}}$
See R script

Logistic regression and generalized linear models

• Since Y_i 's are binary, $F_i = P(Y_i = 1 | X = x_i) \sim Ber(f_i)$, and U_i is not necessary

$$logit(F_i) = \alpha + \beta x_i$$

and then $F_i = P(Y_i = 1 | X = x_i) = inv.logit(\alpha + \beta x_i) = \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}$

- Linear regression predict the value Y_i
- Logistic regression predict the probability $P(Y_i = 1)$
- Generalized linear models:
 - ► family = distribution + link function
 - E.g., Binomial + logit for logistic regression
 - For $Y_i \in \{0, 1\}$, actually Bernoulli + logit
- Since distribution is known. MLE can be adopted for estimating α and β :

$$\ell(\alpha,\beta) = \sum_{i=1}^{n} \left[y_i \log \left(inv.logit(\alpha + \beta x_i) \right) + (1 - y_i) \log \left(1 - inv.logit(\alpha + \beta x_i) \right) \right]$$

See R script

[Binary logistic regression]

Elastic net logistic regression

• Penalized linear regression minimizes:

$$\|oldsymbol{y} - oldsymbol{X} \cdot oldsymbol{eta}\|^2 + \lambda_2 \|oldsymbol{eta}\|^2 + \lambda_1 \|oldsymbol{eta}\|_1$$

- $\lambda_1 = 0$ is the Ridge penalty
- $\lambda_2 = 0$ is the Lasso penalty
- Elastic net regularization for logistic regression minimizes:

$$-\ell(\boldsymbol{\beta}) + \lambda \left(\frac{(1-\alpha)}{2} \|\boldsymbol{\beta}\|^2 + \alpha \|\boldsymbol{\beta}\|_1\right)$$

- $\alpha = 0$ is the Ridge penalty
- $\alpha = 1$ is the Lasso penalty
- $\blacktriangleright~\lambda$ is to be found, e.g., by cross-validation