Statistical Methods for Data Science

Lessons 17 and 18 - Confidence intervals: normal data, large sample method, linear regression.

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

From point estimate to interval estimate

• For an estimator $T = h(X_1, \ldots, X_n)$ and a dataset x_1, \ldots, x_n , we derive a *point estimate*:

$$
t = h(x_1, \ldots, x_n)
$$

- Sometimes, a range of plausible values for an unknown parameter is preferred
- Idea: *confidence interval* is an interval for which we can be confident the unknown parameter is in with a specified probability (confidence level)

• From the Chebyshev's inequality:

$$
P(|Y - \mu| < k\sigma) \ge 1 - \tfrac{1}{k^2}
$$

For
$$
Y = \bar{X}_n
$$
, $k = 2$ and $\sigma = 100$ Km/s:

$$
P(|\bar{X}_n-\mu|<200)\geq 0.75
$$

Table 17.1. Michelson data on the speed of light.

- ► I.e., $\bar{X}_n \in (\mu 200, \mu + 200)$ with probability $\geq 75\%$ [random variable in a fixed interval] ► or, $\mu\in(\bar{X}_n-$ 200, \bar{X}_n+ 200) with probability \geq 75% [fixed value in a random interval]
	-
- $\bullet\,\, (\bar{X}_n-200,\bar{X}_n+200)$ is an interval estimator of the unknown μ
- $\bullet\,$ Let $\,t=$ 299852.4 be the estimate (realization of $\,T=\bar X_n)\,$
- $\mu \in (t 200, t + 200) = (299652.4, 300052.4)$ is correct with confidence $\geq 75\%$

More info on T means better (smaller) intervals

 \bullet Assume $X_i \sim N(\mu, \sigma^2)$. Hence, $\bar{X}_n \sim N(\mu, \sigma^2/n)$ and:

$$
Z_n = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \sim N(0, 1)
$$

- $P(-1.15 < Z_n < 1.15) = \Phi(1.15) \Phi(-1.15) = 0.75$
- \blacktriangleright -1.15 = $q_{0.125}$ and 1.15 = $q_{0.875}$ are called the critical values for achieving 75% probability • Going back to \bar{X}_n :

$$
P(\bar{X}_n-1.15\frac{\sigma}{\sqrt{n}}\leq\mu\leq\bar{X}_n+1.15\frac{\sigma}{\sqrt{n}})=0.75
$$

 \bullet $\mu\in(t-1.15\frac{200}{\sqrt{100}},t+1.15\frac{200}{\sqrt{100}}) =$ $\rm(t$ -23, $\rm t$ +23) is correct with confidence $=75\%$

Confidence intervals

CONFIDENCE INTERVALS. Suppose a dataset x_1, \ldots, x_n is given, modeled as realization of random variables X_1, \ldots, X_n . Let θ be the parameter of interest, and γ a number between 0 and 1. If there exist sample statistics $L_n = g(X_1, \ldots, X_n)$ and $U_n = h(X_1, \ldots, X_n)$ such that

$$
P(L_n < \theta < U_n) = \gamma
$$

for every value of θ , then

 (l_n, u_n)

where $l_n = g(x_1, \ldots, x_n)$ and $u_n = h(x_1, \ldots, x_n)$, is called a $100\gamma\%$ confidence interval for θ . The number γ is called the confidence level.

- Sometimes, only have $P(L_n < \theta < U_n) > \gamma$ [conservative 100 γ % confidence interval]
	- \blacktriangleright E.g., the interval found using Chebyshev's inequality
- There is no way of knowing if $l_n < \theta < u_n$ (interval is correct)
- We only know that we have probability γ of covering θ
- Notation: $\gamma = 1 \alpha$ where α is called the *significance level*
	- \blacktriangleright E.g., 95% confidence level equivalent to 0.05 significance level

[Seeing theory simulation](https://seeing-theory.brown.edu/frequentist-inference/index.html#section1)

Confidence interval for the mean

- \bullet Let X_1,\ldots,X_n be a random sample and $\mu=E[X_i]$ to be estimated
- Problem: confidence intervals for μ ?
	- \blacktriangleright Normal data
		- \Box with known variance
		- \Box with unknown variance
	- \triangleright General data (with unknown variance)
		- \Box large sample, i.e., large n
		- \Box bootstrap (next lesson)

Critical values

Critical value

The (right) *critical value* z_p of $Z \sim N(0, 1)$ is the number with right tail probability p:

 $P(Z > z_n) = p$

- Alternatively, $p = 1 \Phi(z_p) = 1 P(Z \leq z_p)$.
	- \triangleright This is why Table B.1 of the textbook is given for $1 \Phi()$
- Alternatively, $\Phi(z_p) = 1 p$, i.e., z_p is the $(1 p)$ th quantile
- By $P(Z \ge z_p) = P(Z \le -z_p) = p$, we have:

$$
P(Z \ge -z_p) = 1 - P(Z \le -z_p) = 1 - p
$$

and then:

$$
z_{1-p} = -z_p
$$

• E.g., $z_{0.975} = -z_{0.025} = -1.96$ and $z_{0.025} = -z_{.975} = 1.96$

CI for the mean: normal data with known variance

- Dataset x_1,\ldots,x_n realization of random sample $X_1,\ldots,X_n\sim \mathcal{N}(\mu,\sigma^2)$
- $\bullet\,$ Estimator $\bar{X}_n \sim \mathcal{N}(\mu,\sigma^2/n)$ and the scaled mean:

$$
Z = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \sim N(0, 1) \tag{1}
$$

• Confidence interval for Z:

$$
P(c_1 \le Z \le c_u) = \gamma
$$
 or $P(Z \le c_1) + P(Z \ge c_u) = \alpha = 1 - \gamma$

• Symmetric split:

$$
P(Z \leq c_I) = P(Z \geq c_u) = \alpha/2
$$

Hence $c_u=-c_l=z_{\alpha/2}$, and by (1) :

$$
P(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha = \gamma
$$

 $(\bar X_n-z_{\alpha/2}\frac{\sigma}{\sqrt n}, \bar X_n+z_{\alpha/2}\frac{\sigma}{\sqrt n})$ is a $100\gamma\%$ or $100(1-\alpha)\%$ confidence interval for μ

One-sided confidence intervals

• One-sided confidence intervals (greater-than):

$$
P(L_n < \theta) = \gamma
$$

Then (l_n, ∞) is a 100 $\gamma\%$ or 100 $(1 - \alpha)\%$ one-sided confidence interval

- \bullet l_n is called the lower confidence bound
- Normal data with known variance:

$$
P(\bar{X}_n - z_\alpha \frac{\sigma}{\sqrt{n}} \le \mu) = 1 - \alpha = \gamma
$$

 $(\bar X_n - z_\alpha \frac{\sigma}{\sqrt n}, \infty)$ is a $100\gamma\%$ or $100(1-\alpha)\%$ one-sided confidence interval for μ See R script

CI for the mean: normal data with unknown variance

- When σ^2 is **unknown**, we use its unbiased estimator: $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$
- The following transformation is called *studentized mean*:

$$
T=\sqrt{n}\frac{\bar{X}_n-\mu}{S_n}\sim t(n-1)
$$

DEFINITION. A continuous random variable has a t -distribution with *parameter m*, where $m > 1$ is an integer, if its probability density is given by

$$
f(x) = k_m \left(1 + \frac{x^2}{m} \right)^{-\frac{m+1}{2}} \quad \text{for } -\infty < x < \infty,
$$

where $k_m = \Gamma(\frac{m+1}{2})/(\Gamma(\frac{m}{2})\sqrt{m\pi})$. This distribution is denoted by $t(m)$ and is referred to as the *t*-distribution with m degrees of freedom.

- Student t-distribution $X \sim t(m)$: [Some history on its discovery](https://en.wikipedia.org/wiki/William_Sealy_Gosset)
	- \triangleright for $m = 1$, it is the Cauchy distribution
	- \blacktriangleright $E[X] = 0$ for $m \geq 2$, and $Var(X) = m/(m-2)$ for $m \geq 3$
	- For $m \to \infty$, $X \to N(0, 1)$ See R script 10/16

CI for the mean: normal data with unknown variance

• Dataset x_1,\ldots,x_n realization of random sample $X_1,\ldots,X_n\sim \mathcal{N}(\mu,\sigma^2)$

Critical value

The (right) critical value $t_{m,p}$ of $T \sim t(m)$ is the number with right tail probability p:

 $P(T > t_{m,n}) = p$

- Same properties of z_p
- From the studentized mean:

$$
T=\sqrt{n}\frac{\bar{X}_n-\mu}{S_n}\sim t(n-1)
$$

to confidence interval:

$$
P(\bar{X}_n - t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}} \le \mu \le \bar{X}_n + t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}) = 1 - \alpha = \gamma
$$

 $(\bar{X}_n - t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}})$ $\frac{n}{\sqrt{n}}, \bar{X}_n + t_{n-1, \alpha/2} \frac{S_n}{\sqrt{n}}$ $\frac{a}{n}$) is a 100 $\gamma\%$ or 100 $(1-\alpha)\%$ confidence interval for μ See R script

CI for the mean: general data with unknown variance

- Dataset x_1, \ldots, x_n realization of random sample $X_1, \ldots, X_n \sim F$
- A variant of CLT states that for $n \to \infty$

$$
T=\sqrt{n}\frac{\bar{X}_n-\mu}{S_n}\to N(0,1)
$$

• For large n, we make the approximation: **For a state in the interval of the state** should n be?

$$
T=\sqrt{n}\frac{\bar{X}_n-\mu}{S_n}\approx N(0,1)
$$

and then

$$
P(\bar{X}_n - z_{\alpha/2} \frac{S_n}{\sqrt{n}} \le \mu \le \bar{X}_n + z_{\alpha/2} \frac{S_n}{\sqrt{n}}) \approx 1 - \alpha = \gamma
$$

 $(\bar{X}_n - z_{\alpha/2} \frac{S_n}{\sqrt{R}})$ $\frac{n}{n}, \bar{X}_n + z_{\alpha/2} \frac{S_n}{\sqrt{n}}$ $\frac{n}{n}$) is a 100 $\gamma\%$ or 100 $(1-\alpha)\%$ confidence interval for μ See R script

Determining the sample size

- The narrower the CI the better (smaller variability)
- Sometimes, we start with an accuracy requirement:
	- \triangleright find a 100(1 − α)% CI (l_n, u_n) such that $u_n l_n \leq w$
- How to set *n* to satisfy the *w* bound?
- Case: normal data with known variance
	- ► CI is $(\bar{X}_n z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$
	- \triangleright Bound on the Cl is:

$$
2z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\leq w
$$

leading to:

$$
n \geq \left(2z_{\alpha/2}\frac{\sigma}{w}\right)^2
$$

CI for other parameters: linear regression coefficients

- \bullet Simple linear regression: $Y_i = \alpha + \beta x_i + U_i$ with $U_i \sim \mathcal{N}(0, \sigma^2)$
- We have $\hat{\beta} \sim \mathcal{N}(\beta, \textit{Var}(\hat{\beta}))$ where $\textit{Var}(\hat{\beta}) = \sigma^2 / SXX$ is unknown [prove it!]
- The studentized statistics is $t(n-2)$ -distributed: [proof omitted]

 $\hat{\beta}-\beta$ $\sqrt{Var(\hat{\beta})}$ $\sim t(n-2)$

• For $\gamma = 0.95$: $P(-t_{n-2,0.025} \leq$ $\hat{\beta}-\beta$ $\sqrt{Var(\hat{\beta})}$ $\le t_{n-2,0.025}$) = 0.95

and then a 95% confidence interval is: $\hat{\beta} \pm t_{n-2,0.025}$ se $(\hat{\beta})$ where se $(\hat{\beta}) = \hat{\sigma}^2/\sqrt{2}$ SXX

• Similarly, we get for α , $\hat{\alpha} \pm t_{n-2,0.025}$ se $(\hat{\alpha})$

See R script

CI for other parameters: expectation of fitted values

- \bullet Simple linear regression: $Y_i = \alpha + \beta x_i + U_i$ with $U_i \sim \mathcal{N}(0, \sigma^2)$
- For the fitted values $\hat{y} = \hat{\alpha} + \hat{\beta}x_0$ at x_0 , a 95% confidence interval is:

$$
\hat{y} \pm t_{n-2,0.025} se(\hat{Y})
$$

where
$$
\text{se}(\hat{Y}) = \hat{\sigma}\sqrt{\left(\frac{1}{n} + \frac{(\bar{x}_n - x_0)^2}{SXX}\right)}
$$

- This interval concerns the expectation of fitted values at x_0 .
	- **E.g., the mean of predicted values at x₀ is in [** $\hat{y} + t_{n-2,0.025}$ **se(** \hat{Y} **)**, $\hat{y} t_{n-2,0.025}$ se(\hat{Y})]

See R script

CI for other parameters: fitted values

- \bullet Simple linear regression: $Y_i = \alpha + \beta x_i + U_i$ with $U_i \sim \mathcal{N}(0, \sigma^2)$
- For a given single prediction, we must also account for the error term U in:

$$
\hat{V} = \hat{\alpha} + \hat{\beta}x_0 + U
$$

- Assuming $U \sim \mathcal{N}(0, \sigma^2)$, we have $Var(\hat{V}) = \sigma^2(1 + \frac{1}{n} + \frac{(\bar{x}_n x_0)^2}{5XX})$
- A 95% confidence interval is:

$$
\hat{y} \pm t_{n-2,0.025} se(\hat{V})
$$

where $\textit{se}(\, \hat{V}) = \hat{\sigma}\sqrt{(1 + \frac{1}{n} + \frac{(\bar{x}_{n} - x_{0})^{2}}{SXX})}$

• A predicted value at x_0 is in $[\hat{y} + t_{n-2,0.025}$ se (\hat{V}) and $\hat{y} - t_{n-2,0.025}$ se (\hat{V})]

See R script