Statistical Methods for Data Science

Lesson 19 - Empirical bootstrap.

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

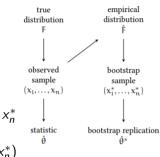
Bootstrap principle

- Let $X_1, \ldots, X_n \sim F$ be a random sample
 - with unknown distribution F
- Estimator $T = h(X_1, \dots, X_n)$, e.g., $\bar{X}_n = (X_1 + \dots + X_n)/n$
- From a dataset x_1, \ldots, x_n , we can
 - derive a point estimate $\hat{\theta} = h(x_1, \dots, x_n)$
 - ightharpoonup or, derive an estimate \hat{F} of F
- From \hat{F} we can generate (a lot of) bootstrap samples x_1^*, \ldots, x_n^*
 - lacktriangle as realizations of $X_1^*,\ldots,X_n^*\sim \hat{F}$

and then (a lot of) bootstrap point estimates $\hat{\theta}^* = h(x_1^*, \dots, x_n^*)$

• By the LLN, the empirical distribution of $\hat{\theta}^*$ will approximate the distribution of $T^* = h(X_1^*, \dots, X_n^*)$ and then of T

BOOTSTRAP PRINCIPLE. Use the dataset $x_1, x_2, ..., x_n$ to compute an estimate \hat{F} for the "true" distribution function F. Replace the random sample $X_1, X_2, ..., X_n$ from F by a random sample $X_1^*, X_2^*, ..., X_n^*$ from \hat{F} , and approximate the probability distribution of $h(X_1, X_2, ..., X_n)$ by that of $h(X_1, X_2^*, ..., X_n^*)$.



- How to derive \hat{F} from x_1, \ldots, x_n ?
- If we know nothing about F, use the empirical distribution:

$$\hat{F}(a) = F_n(a) = \frac{|\{i \in 1, \dots, n \mid x_i \le a\}|}{n}$$
 [Glivenko-Cantelli Thm]

- How to generate a bootstrap sample x_1^*, \ldots, x_n^* ?
 - x_i^* is chosen randomly from \hat{F}
 - ▶ i.e., x_i^* s chosen randomly from $x_1, ..., x_n$ (our dataset)
- statistic bootstrap replication ê*

 om sampling with replacement!

distribution

observed

sample

 (x_1, \ldots, x_n)

empirical

distribution

bootstrap

sample

 (x_1^*, \dots, x_n^*)

- Hence, a bootstrap dataset x_1^*, \dots, x_n^* is obtained by random sampling with replacement!
- Often the bootstrap approximation of the distribution of T will improve if we somehow normalize T by relating it to a corresponding feature of the "true" distribution.
 - rather than approximating the distribution of \bar{X}_n by the one of \bar{X}_n^*
 - better to approximate $\bar{X}_n \mu$ by $\bar{X}_n^* \mu^*$, where $\mu^* = \bar{x}_n = (x_1^* + \ldots + x_n^*)/n$ [See remarks 18.1 and 18.2 of textbook]

EMPIRICAL BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F, and compute the expectation

$$\mu^* = \bar{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

corresponding to F_n .

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n .
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \bar{x}_n,$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}.$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* \bar{x}_n$ for estimating
 - $\delta = \bar{x}_n \mu$ as mean (δ^*)
 - ▶ and then $\mu = \bar{x}_n$ mean (δ^*) with bias $\bar{x}_n (\bar{x}_n$ mean (δ^*) = mean (δ^*)

EMPIRICAL BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F, and compute the expectation

$$\mu^* = \bar{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

corresponding to F_n .

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n .
- $2. \,$ Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \bar{x}_n,$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}.$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* \bar{x}_n$ for estimating
 - confidence interval (c_l, c_u) for $\delta = \bar{x}_n \mu$ as $(q_{\alpha/2}, q_{1-\alpha/2})$ of δ^* distribution
 - $c_l \le \delta = \bar{x}_n \mu \le c_u$ implies $\bar{x}_n c_u \le \mu \le \bar{x}_n c_l$, i.e. c.i. for μ is $(\bar{x}_n c_u, \bar{x}_n c_l)$

boot.ci method in R confidence intervals:

- type='basic': $(\bar{x}_n-q_{1-\alpha/2},\bar{x}_n-q_{\alpha/2})$ with quantiles over the distribution of δ^*
- type='perc': $(q_{lpha/2},q_{1-lpha/2})$ with quantiles over the distribution of $ar{x}_n^*$
- type='norm': $(\bar{x}_n q_{1-\alpha/2}, \bar{x}_n q_{\alpha/2})$ with quantiles over $N(mean(\delta^*), var(\delta^*))$
- type='bca': bias correction and acceleration

boot.ci method in R confidence intervals:

• type='stud': $(\bar{x}_n-q_{1-\alpha/2}\frac{s_n}{\sqrt{n}},\bar{x}_n-q_{\alpha/2}\frac{s_n}{\sqrt{n}})$ with quantiles over the distribution of t^*

EMPIRICAL BOOTSTRAP SIMULATION FOR THE STUDENTIZED MEAN. Given a dataset x_1, x_2, \ldots, x_n , determine its empirical distribution function F_n as an estimate of F. The expectation corresponding to F_n is $\mu^* = \bar{x}_n$.

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \dots, x_n^*$ from F_n .
- $2. \;\;$ Compute the studentized mean for the bootstrap dataset:

$$t^* = \frac{\bar{x}_n^* - \bar{x}_n}{s_n^* / \sqrt{n}},$$

where \bar{x}_n^* and s_n^* are the sample mean and sample standard deviation of $x_1^*, x_2^*, \dots, x_n^*$.

Repeat steps 1 and 2 many times.

- Bootstrap approach applies to any estimator, not only the mean
- Example 1: the German Tank problem
- Example 2: linear regression coefficients

An application of empirical bootstrap

- Bootstrap principle: the empirical distribution of $\delta^* = \bar{x}_n^* \bar{x}_n$ approximates the distribution of $\delta = \bar{x}_n \mu$
- Application: estimate $P(|\bar{X}_n \mu| > 1)$ as the fraction of δ^* such that $|\delta^*| > 1$
- How good is the approximation?