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Bootstrap principle
• Let X1, . . . ,Xn ∼ F be a random sample

I with unknown distribution F

• Estimator T = h(X1, . . . ,Xn), e.g., X̄n = (X1 + . . .+ Xn)/n
• From a dataset x1, . . . , xn, we can

I derive a point estimate θ̂ = h(x1, . . . , xn)
I or, derive an estimate F̂ of F

• From F̂ we can generate (a lot of) bootstrap samples x∗1 , . . . , x
∗
n

I as realizations of X ∗
1 , . . . ,X

∗
n ∼ F̂

and then (a lot of) bootstrap point estimates θ̂∗ = h(x∗1 , . . . , x
∗
n )

• By the LLN, the empirical distribution of θ̂∗ will approximate the distribution of
T ∗ = h(X ∗1 , . . . ,X

∗
n ) and then of T
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Empirical bootstrap

• How to derive F̂ from x1, . . . , xn?

• If we know nothing about F , use the empirical distribution:

F̂ (a) = Fn(a) = |{i∈1,...,n | xi≤a}|
n [Glivenko-Cantelli Thm]

• How to generate a bootstrap sample x∗1 , . . . , x
∗
n?

I x∗i is chosen randomly from F̂
I i.e., x∗i s chosen randomly from x1, . . . , xn (our dataset)

• Hence, a bootstrap dataset x∗1 , . . . , x
∗
n is obtained by random sampling with replacement!

• Often the bootstrap approximation of the distribution of T will improve if we somehow
normalize T by relating it to a corresponding feature of the “true” distribution.

I rather than approximating the distribution of X̄n by the one of X̄ ∗
n

I better to approximate X̄n − µ by X̄ ∗
n − µ∗, where µ∗ = x̄n = (x∗1 + . . .+ x∗n )/n

[See remarks 18.1 and 18.2 of textbook]
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Empirical bootstrap

• Use the empirical distribution of δ∗ = x̄∗n − x̄n for estimating
I δ = x̄n − µ as mean(δ∗)
I and then µ = x̄n− mean(δ∗) with bias x̄n − (x̄n− mean(δ∗)) = mean(δ∗)

See R script
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Empirical bootstrap

• Use the empirical distribution of δ∗ = x̄∗n − x̄n for estimating
I confidence interval (cl , cu) for δ = x̄n − µ as (qα/2, q1−α/2) of δ∗ distribution
I cl ≤ δ = x̄n − µ ≤ cu implies x̄n − cu ≤ µ ≤ x̄n − cl , i.e. c.i. for µ is (x̄n − cu, x̄n − cl)

See R script
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Empirical bootstrap

boot.ci method in R confidence intervals:

• type=‘basic’: (x̄n − q1−α/2, x̄n − qα/2) with quantiles over the distribution of δ∗

• type=‘perc’: (qα/2, q1−α/2) with quantiles over the distribution of x̄∗n
• type=‘norm’: (x̄n − q1−α/2, x̄n − qα/2) with quantiles over N(mean(δ∗), var(δ∗))

• type=‘bca’: bias correction and acceleration
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Empirical bootstrap

boot.ci method in R confidence intervals:

• type=‘stud’: (x̄n − q1−α/2
sn√
n
, x̄n − qα/2

sn√
n

) with quantiles over the distribution of t∗

See R script

7 / 9



Empirical bootstrap

• Bootstrap approach applies to any estimator, not only the mean

• Example 1: the German Tank problem

• Example 2: linear regression coefficients

See R script
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An application of empirical bootstrap

• Bootstrap principle: the empirical distribution of δ∗ = x̄∗n − x̄n approximates the
distribution of δ = x̄n − µ
• Application: estimate P(|X̄n − µ| > 1) as the fraction of δ∗ such that |δ∗| > 1

• How good is the approximation?

See R script
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