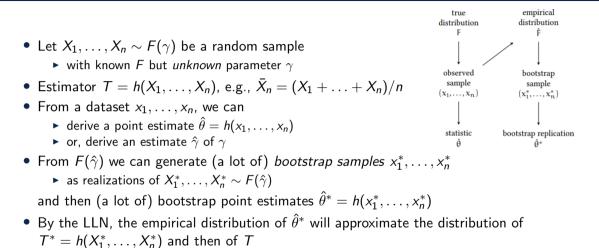
Statistical Methods for Data Science Lesson 20 - Parametric bootstrap. Hypotheses testing.

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Parametric bootstrap principle



Parametric bootstrap

PARAMETRIC BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , compute an estimate $\hat{\theta}$ for θ . Determine $F_{\hat{\theta}}$ as an estimate for F_{θ} , and compute the expectation $\mu^* = \mu_{\hat{\theta}}$ corresponding to $F_{\hat{\theta}}$.

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from $F_{\hat{\theta}}$.
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - \mu_{\hat{\theta}}$$

where

$$\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}^*_n \mu_{\hat{\theta}}$ for estimating
 - ► confidence interval (c_l, c_u) for $\delta = \bar{x}_n \mu$ as $(q_{\alpha/2}, q_{1-\alpha/2})$ of δ^* distribution

•
$$c_l \leq \delta = \bar{x}_n - \mu \leq c_u$$
 implies $\bar{x}_n - c_u \leq \mu \leq \bar{x}_n - c_l$, i.e. c.i. for μ is $(\bar{x}_n - c_u, \bar{x}_n - c_l)$

See R script

Application: distribution fitting

- Consider a dataset $x_1, \ldots, x_n \sim F$
- Is the dataset from an Exp(λ) for some λ? I.e., is it F = Exp(λ)?
- We estimate $\hat{\lambda} = 1/\bar{x}_n$
- We measure how close is the dataset to the distribution as:

$$t_{ks} = \sup_{a \in \mathbb{R}} |F_n(a) - F_{\hat{\lambda}}(a)|$$

where:

- $F_n(a)$ is the empirical cumulative distribution of x_1, \ldots, x_n
- $F_{\hat{\lambda}}(a) = 1 e^{\hat{\lambda} a}$, for $a \ge 0$, is the distribution function of $Exp(\hat{\lambda})$
- ► t_{ks} is called the Kolmogorov-Smirnov distance
- if $F = Exp(\lambda)$ then both $F_n \approx F$ and $F_{\hat{\lambda}} \approx F$, and then $F_n \approx F_{\hat{\lambda}}$, so that t_{ks} is small
- if $F \neq Exp(\lambda)$ then $F_n \approx F \neq Exp(\lambda) \approx F_{\hat{\lambda}}$, so that t_{ks} is large

See R script

Application: distribution fitting

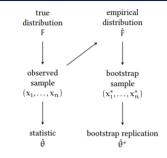
- For the software dataset from the textbook
 - $\hat{\lambda} = 0.0015$ and $t_{ks} = 0.17$
- Is $t_{ks} = 0.17$ expected or an extreme value?
- Let's study the distribution of the bootstrap estimator:

$${T_{ks}} = \mathop {\sup }\limits_{a \in \mathbb{R}} \left| {F_n^* (a) - F_{{{\hat \Lambda }^*}} (a)}
ight|$$

where:

- $X_1^*, \ldots, X_n^* \sim \textit{Exp}(\hat{\lambda})$ is a bootstrap sample
- $F_n^*(a)$ is the empirical cumulative distribution of the bootstrap sample • $\hat{\Lambda}^* = 1/\bar{X}_n^*$
- It turns out $P(T_{ks} > 0.17) \approx 0$, unlikely that Exp() is the right model

See R script



Hypothesis testing

- In the previous application, we tested how likely is Exp() for the given dataset
- In general, hypotheses testing consists of contrasting two conflicting theories (hypotheses) based on observed data
- Consider the German tank problem:
 - Military intelligence states that N = 350 tanks were produced
 - Alternative hypothesis:
 - N < 350 (one-tailed or one-sided test), or $N \neq 350$ (two-tailed or two-sided test)
 - Observed serial tank id's: 61 19 56 24 16
- Statistical test: How likely is the observed data under the null hypothesis?
 - ▶ If it is NOT (sufficiently) likely, we reject the null hypothesis in favor of H1
 - ▶ If it is (sufficiently) likely, we cannot reject the null hypothesis
- Why 'we cannot reject the null hypothesis' and not instead 'we accept the null hypothesis'?
 - ▶ Other hypotheses, e.g., N = 349 or N = 351, could also not be rejected
 - We cannot say which of N = 349 or N = 350 or N = 351 is actually true

[H0 or null hypothesis]

[H1 hypothesis]

Test statistic

TEST STATISTIC. Suppose the dataset is modeled as the realization of random variables X_1, X_2, \ldots, X_n . A *test statistic* is any sample statistic $T = h(X_1, X_2, \ldots, X_n)$, whose numerical value is used to decide whether we reject H_0 .

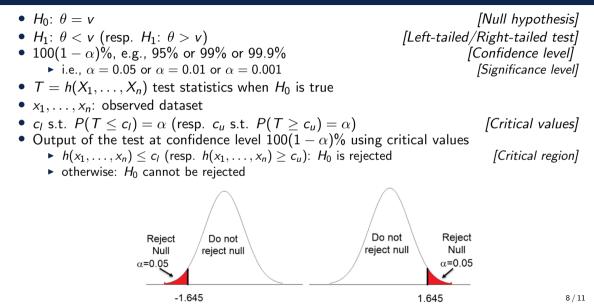
- In the German tank example:
 - $H_0: N = 350$
 - ► *H*₁ : *N* < 350
 - Observed serial tank id's: 61 19 56 24 16
- We use $T = \max \{X_1, X_2, X_3, X_4, X_5\}$
- If H_0 is true, i.e., N = 350, then $E[T] = \frac{5}{6}(N+1) = \frac{5}{6}351 = 292.5$

Values in	Values in	Values against
favor of H_1	favor of H_0	both H_0 and H_1
5	292.5	1 350

• If H₀ is true, we have:

$$P(T \le 61) = P(\max\{X_1, X_2, X_3, X_4, X_5\} \le 61) = \frac{61}{350} \cdot \frac{60}{349} \dots \frac{57}{346} = 0.00014$$
very unlikely: either we are unfortunate, or H_0 can be rejected

Statistical test of hypothesis: one-tailed



Statistical test of hypothesis: one-tailed

• $H_0: \theta = v$

$$H_{1}: \theta < v \text{ (resp. } H_{1}: \theta > v \text{)} \qquad [Left-tailed/Right-tailed test]}$$

$$100(1 - \alpha)\%, \text{ e.g., } 95\% \text{ or } 99\% \text{ or } 99.9\% \text{ or } 99.9\% \text{ or } 99.9\% \text{ or } 90.01 \text{ or } \alpha = 0.001 \qquad [Confidence level]}$$

$$\bullet \text{ i.e., } \alpha = 0.05 \text{ or } \alpha = 0.01 \text{ or } \alpha = 0.001 \qquad [Significance level]}$$

$$T = h(X_{1}, \dots, X_{n}) \text{ test statistics when } H_{0} \text{ is true}$$

$$x_{1}, \dots, x_{n}: \text{ observed dataset}$$

$$p = P(T \le h(x_{1}, \dots, x_{n})) \text{ (resp. } p = P(T \ge h(x_{1}, \dots, x_{n}))) \qquad [p-value]$$

$$\bullet \text{ evidence against } H_{0} \text{ - the smaller the stronger evidence}$$

$$Output \text{ of the test at confidence level } 100(1 - \alpha)\% \text{ using } p\text{-values}$$

$$\bullet p \le \alpha: H_{0} \text{ is rejected}$$

$$\bullet \text{ otherwise: } H_{0} \text{ cannot be rejected}$$

p=0.009

α=0.05

[Null hypothesis]

Statistical test of hypothesis: two-tailed

•
$$H_0: \theta = v$$
 [Null hypothesis]
• $H_1: \theta \neq v$ [Two-tailed test]
• $100(1 - \alpha)\%$, e.g., 95% or 99% or 99.9% [Confidence level]
• i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$ [Significance level]
• $T = h(X_1, \dots, X_n)$ test statistics when H_0 is true
• x_1, \dots, x_n : observed dataset
• c_l s.t. $P(T \leq c_l) = \alpha/2$ and c_u s.t. $P(T \geq c_u) = \alpha/2$ [Critical values]
• $h(x_1, \dots, x_n) \leq c_l$ or $h(x_1, \dots, x_n) \geq c_u$: H_0 is rejected
• otherwise: H_0 cannot be rejected
Reject
Null
 $\alpha/2 = 0.025$ Do not
Reject Null
 $\alpha/2 = 0.025$

1.96

-1.96

Type I and Type II errors

		True state of nature	
		H_0 is true	H_1 is true
Our decision on the basis of the data	Reject H_0	Type I error	Correct decision
	Not reject H_0	Correct decision	Type II error

• Type I error: we falsely reject H_0

[α -risk, false positive rate]

 $[\beta$ -risk, false negative rate]

- ► E.g., convicting an innocent defendant
- ▶ we reject H_0 when $p < \alpha$, so this error occur with probability $100\alpha\%$
- \blacktriangleright this error can be controlled by setting the significance level α to the largest acceptable value
- how much is an acceptable value?
- A possible solution is to solely report the *p*-value, which conveys the maximum amount of information and permits decision makers to choose their own level
- Type II error: we falsely do not reject H_0
 - E.g., acquitting a criminal
 - ▶ $1 \beta = P(\text{Reject}H_0 | H_1 \text{ is true})$ is called the *power* of the test