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Parametric bootstrap principle

true empirical
distribution dlstrilgution
F i
® let Xi,...,X, ~ F(7) be a random sample I /’ \
» with known F but unknown parameter ~y
_ observed bootstrap
e Estimator T = h(Xy,..., X,), eg., Xop=(X1+ ...+ X;)/n e e
® From a dataset xi,...,Xx,, We can I \
> derive a point es_tlmateAH = h(Xh T 7Xn) statistic bootstrap replication
> or, derive an estimate 4 of ~ é ér
® From F(9) we can generate (a lot of) bootstrap samples x7, ..., x,
» as realizations of X{,..., X* ~ F(%)

and then (a lot of) bootstrap point estimates * = h(x},...,x*)

® By the LLN, the empirical distribution of 0% will approximate the distribution of
T* = h(X{,..., X)) and then of T
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Parametric bootstrap

PARAMETRIC BOOTSTRAP SIMULATION (FOR X, — u). Given a
dataset x1, o, ..., x,, compute an estimate 6 for 6. Determine Fy
as an estimate for Fp, and compute the expectation p* = ji5 corre-
sponding to Fj.

1. Generate a bootstrap dataset a7, 23, ..., 2, from Fj.

2. Compute the centered sample mean for the bootstrap dataset:

Ty — Mg,
where . ) B
e _ it ap Aty

n n

Repeat steps 1 and 2 many times.

® Use the empirical distribution of §* = X — p, for estimating

» confidence interval (¢, ¢,) for 6 = X, — pt as (qa/2; q1—a/2) of 0* distribution
> g <d=X,—pu<c,implies X, — c, < u < X, — ¢, i.e. c.i. for pis (X, — ¢y, Xn — 1)

See R script
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Application: distribution fitting

® Consider a dataset x1,...,x, ~ F

® |s the dataset from an Exp(\) for some A? l.e., is it F = Exp()\)?
e We estimate \ = 1/xn

® \We measure how close is the dataset to the distribution as:

tks = sup [Fn(a) — F5(a)]
aeR

where:
» F,(a) is the empirical cumulative distribution of xi, ..., xp
» F5(a) =1—e? for a> 0, is the distribution function of Exp(})
> tys is called the Kolmogorov-Smirnov distance
e if F = Exp(\) then both F, ~ F and Fs ~ F, and then F, = F;, so that t;s is small
e if F# Exp()\) then F, = F # Exp()\) = F;, so that ty is large
See R script
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Application: distribution fitting

true empirical

distribution dlstrilgution
F 3
® For the software dataset from the textbook I / \
» X\ =0.0015 and txs = 0.17 o -
observe 00| srap
® |s t;,s = 0.17 expected or an extreme value? [xfﬁ“fp': } (xf“mp':_}
® | et's study the distribution of the bootstrap estimator: I \
statistic bootstrap replication
Tis = sup |F;(a) — Fp.(a)| ; o
acR
where:

~

» X{,..., X} ~ Exp()) is a bootstrap sample

» F’(a) is the empirical cumulative distribution of the bootstrap sample

» A*=1/X*
® |t turns out P(Tys > 0.17) ~ 0, unlikely that Exp() is the right model
See R script
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Hypothesis testing

In the previous application, we tested how likely is Exp() for the given dataset

In general, hypotheses testing consists of contrasting two conflicting theories (hypotheses)
based on observed data

® Consider the German tank problem:
» Military intelligence states that NV = 350 tanks were produced [HO or null hypothesis]
» Alternative hypothesis: [H1 hypothesis]

N < 350 (one-tailed or one-sided test), or N # 350 (two-tailed or two-sided test)

» Observed serial tank id's: 61 19 56 24 16
Statistical test: How likely is the observed data under the null hypothesis?

» If it is NOT (sufficiently) likely, we reject the null hypothesis in favor of H1

» If it is (sufficiently) likely, we cannot reject the null hypothesis
Why "we cannot reject the null hypothesis' and not instead 'we accept the null
hypothesis’ ?

» Other hypotheses, e.g., N = 349 or N = 351, could also not be rejected

» We cannot say which of N =349 or N = 350 or N = 351 is actually true
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Test statistic

TeST StATISTIC. Suppose the dataset is modeled as the realization
of random variables X1, Xo,..., X,. A test statistic is any sample
statistic T = h(X1, Xo,...,X,,), whose numerical value is used to
decide whether we reject Hp.

® |n the German tank example:
> Ho: N = 350
» H; : N <350
» Observed serial tank id’s: 61 19 56 24 16

e We use T = max{Xy, Xz, X3, Xa, X5}

e If Ho is true, i.e., N = 350, then E[T] = 3(N +1) = 2351 = 292.5
Values in Values in Values against
favor of Hi favor of Hg both Ho andHl
.1) 29|2.5 3%0

°

If Hp is true, we have:

1 7
P(T < 61) = P(max {X0, Xo, X5, X, Xs} < 61) = o= . 00 5

350 349 346
very unlikely: either we are unfortunate, or Hy can be rejected 7/11

= 0.00014



Statistical test of hypothesis: one-tailed

® Hy: 0=v [Null hypothesis]
® Hi: 0 < v (resp. Hi: 6 > v) [Left-tailed /Right-tailed test]
e 100(1 — )%, e.g., 95% or 99% or 99.9% [Confidence level]
> i.e., @« =0.050r & =0.01 or & =0.001 [Significance level]
o T = h(Xy,...,Xp) test statistics when Hy is true
® xi,...,Xp. observed dataset
e ¢st. P(T <c¢)=a/((resp. ¢,st. P(T>c,)=a) [Critical values]
® Qutput of the test at confidence level 100(1 — «)% using critical values
> h(xt,...,xn) < ¢ (resp. h(xy,...,xn) > cu): Ho is rejected [Critical region]

» otherwise: Hy cannot be rejected

Reject Do not / Do not Reject
Null reject null reject null Null
=0.05 a=0.05
~ P
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Statistical test of hypothesis: one-tailed

® Hy: 0=v [Null hypothesis]

® Hi: 0 < v (resp. Hi: 6 > v) [Left-tailed /Right-tailed test]

e 100(1 — )%, e.g., 95% or 99% or 99.9% [Confidence level]
> i.e., @« =0.050r & =0.01 or & =0.001 [Significance level]

o T = h(Xy,...,Xp) test statistics when Hy is true

® xi,...,Xp. observed dataset

® p=P(T < h(x1,...,xn)) (resp. p=P(T > h(x1,...,xn))) [p-value]
» evidence against Hy - the smaller the stronger evidence

® Qutput of the test at confidence level 100(1 — «)% using p-values

» p < a: Hy is rejected
» otherwise: Hy cannot be rejected

t=-1.645

t=-2'40i

=| ]
p=0.009
a=0.05 9/11



Statistical test of hypothesis: two-tailed

® Hy: 0=v [Null hypothesis]
® Hi: 0#v [Two-tailed test]
e 100(1 — «)%, e.g., 95% or 99% or 99.9% [Confidence level]
> i.e., @« =0.050r & =0.01 or & =0.001 [Significance level]
o T = h(Xy,...,Xp) test statistics when Hy is true
® xi,...,Xp. observed dataset
e st P(T<¢)=«/2and ¢, st. P(T >c,)=«a/2 [Critical values]
® Qutput of the test at confidence level 100(1 — «)% using critical values
> h(x1,...,xn) < ¢ or h(xi,...,x5) > ¢, Ho is rejected [Critical region]

» otherwise: Hy cannot be rejected

Reject / \ ;
Null Do not Reject

(x/2=0£35 reject null | /2=0.025

-1.96 1.96 10/11



Type | and Type Il errors

True state of nature

Ho is true H, is true

Reject Ho Type I error | Correct decision
Our decision on the

basis of the data
Not reject Ho | Correct decision | Type II error

® Type | error: we falsely reject Hp [e-risk, false positive rate]
» E.g., convicting an innocent defendant
» we reject Hy when p < a, so this error occur with probability 100a%
» this error can be controlled by setting the significance level « to the largest acceptable value
» how much is an acceptable value?
» A possible solution is to solely report the p-value, which conveys the maximum amount of

information and permits decision makers to choose their own level

® Type Il error: we falsely do not reject Hy [B-risk, false negative rate]

» E.g., acquitting a criminal

» 1 — 8 = P(RejectHp|H; is true) is called the power of the test )
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