Statistical Methods for Data Science Lesson 20 - Parametric bootstrap. Hypotheses testing.

Salvatore Ruggieri

Department of Computer Science University of Pisa salvatore.ruggieri@unipi.it

Parametric bootstrap principle

Parametric bootstrap

PARAMETRIC BOOTSTRAP SIMULATION (FOR $\bar{X}_n - \mu$). Given a dataset x_1, x_2, \ldots, x_n , compute an estimate $\hat{\theta}$ for θ . Determine $F_{\hat{\theta}}$ as an estimate for F_{θ} , and compute the expectation $\mu^* = \mu_{\hat{\theta}}$ corresponding to $F_{\hat{a}}$.

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from $F_{\hat{\theta}}$.
- 2. Compute the centered sample mean for the bootstrap dataset:

$$
\bar{x}_n^* - \mu_{\hat{\theta}}
$$

where

$$
\bar{x}_n^* = \frac{x_1^* + x_2^* + \dots + x_n^*}{n}
$$

Repeat steps 1 and 2 many times.

- Use the empirical distribution of $\delta^* = \bar{x}_n^* \mu_{\hat{\theta}}$ for estimating
	- ► confidence interval (c_l, c_u) for $\delta = \bar{x}_n \mu$ as $(q_{\alpha/2}, q_{1-\alpha/2})$ of δ^* distribution

$$
\succ c_1 \leq \delta = \bar{x}_n - \mu \leq c_u \text{ implies } \bar{x}_n - c_u \leq \mu \leq \bar{x}_n - c_l, \text{ i.e. c.i. for } \mu \text{ is } (\bar{x}_n - c_u, \bar{x}_n - c_l)
$$

See R script

Application: distribution fitting

- Consider a dataset $x_1, \ldots, x_n \sim F$
- Is the dataset from an $Exp(\lambda)$ for some λ ? I.e., is it $F = Exp(\lambda)$?
- We estimate $\hat{\lambda} = 1/\bar{x}_n$
- We measure how close is the dataset to the distribution as:

$$
t_{ks} = \sup_{a \in \mathbb{R}} |F_n(a) - F_{\hat{\lambda}}(a)|
$$

where:

- \blacktriangleright $F_n(a)$ is the empirical cumulative distribution of x_1, \ldots, x_n
- \blacktriangleright $F_{\hat{\lambda}}(a) = 1 e^{\hat{\lambda}a}$, for $a \geq 0$, is the distribution function of $Exp(\hat{\lambda})$
- \triangleright t_{ks} is called the Kolmogorov-Smirnov distance
- if $F = Exp(\lambda)$ then both $F_n \approx F$ and $F_\lambda \approx F_\lambda$ and then $F_n \approx F_\lambda$, so that t_{ks} is small
- if $F \neq Exp(\lambda)$ then $F_n \approx F \neq Exp(\lambda) \approx F_{\hat{\lambda}}$, so that t_{ks} is large

See R script

Application: distribution fitting

- For the software dataset from the textbook
	- $\lambda = 0.0015$ and $t_{ks} = 0.17$
- Is $t_{ks} = 0.17$ expected or an extreme value?
- Let's study the distribution of the bootstrap estimator:

$$
T_{ks} = \sup_{a \in \mathbb{R}} |F_n^*(a) - F_{\hat{\Lambda}^*}(a)|
$$

where:

- $\blacktriangleright\;\;X_1^*,\ldots,X_n^*\sim E$ x $p(\hat{\lambda})$ is a bootstrap sample
- ► $F_n^*(a)$ is the empirical cumulative distribution of the bootstrap sample $\hat{\Lambda}^* = 1/\bar{X}_n^*$
- It turns out $P(T_{ks} > 0.17) \approx 0$, unlikely that $Exp()$ is the right model See R script

Hypothesis testing

- In the previous application, we tested how likely is $Exp()$ for the given dataset
- In general, hypotheses testing consists of contrasting two conflicting theories (hypotheses) based on observed data
- Consider the German tank problem:
	- \triangleright Military intelligence states that $N = 350$ tanks were produced [H0 or null hypothesis]
	- ► Alternative hypothesis: \Box and \Box a
		- $N < 350$ (one-tailed or one-sided test), or $N \neq 350$ (two-tailed or two-sided test)
	- \triangleright Observed serial tank id's: 61 19 56 24 16
- Statistical test: How likely is the observed data under the null hypothesis?
	- If it is NOT (sufficiently) likely, we reject the null hypothesis in favor of H1
	- If it is (sufficiently) likely, we cannot reject the null hypothesis
- Why 'we cannot reject the null hypothesis' and not instead 'we accept the null hypothesis'?
	- \triangleright Other hypotheses, e.g., $N = 349$ or $N = 351$, could also not be rejected
	- \triangleright We cannot say which of $N = 349$ or $N = 350$ or $N = 351$ is actually true

Test statistic

TEST STATISTIC. Suppose the dataset is modeled as the realization of random variables X_1, X_2, \ldots, X_n . A test statistic is any sample statistic $T = h(X_1, X_2, \ldots, X_n)$, whose numerical value is used to decide whether we reject H_0 .

- In the German tank example:
	- $H_0 : N = 350$
	- $H_1 : N < 350$
	- \triangleright Observed serial tank id's: 61 19 56 24 16
- We use $T = \max\{X_1, X_2, X_3, X_4, X_5\}$
- If H_0 is true, i.e., $N = 350$, then $E[T] = \frac{5}{6}(N+1) = \frac{5}{6}351 = 292.5$

• If H_0 is true, we have:

$$
P(T \le 61) = P(\max\{X_1, X_2, X_3, X_4, X_5\} \le 61) = \frac{61}{350} \cdot \frac{60}{349} \cdot \frac{57}{346} = 0.00014
$$

very unlikely: either we are unfortunate, or H_0 can be rejected

Statistical test of hypothesis: one-tailed

Statistical test of hypothesis: one-tailed

Statistical test of hypothesis: two-tailed

\n- \n
$$
H_0: \theta = v
$$
\n
\n- \n $H_1: \theta \neq v$ \n
\n- \n $H_1: \theta \neq v$ \n
\n- \n $100(1 - \alpha)\%$, e.g., 95% or 99% or 99.9% \n
	\n- i.e., $\alpha = 0.05$ or $\alpha = 0.01$ or $\alpha = 0.001$ \n
	\n- \n $T = h(X_1, \ldots, X_n)$ test statistics when H_0 is true\n X_1, \ldots, X_n : observed dataset\n
	\n- \n $C_I \text{ s.t. } P(T \leq c_I) = \alpha/2 \text{ and } c_u \text{ s.t. } P(T \geq c_u) = \alpha/2$ \n
	\n- \n $C_I \text{ d.t. } P(T \leq c_I) = \alpha/2 \text{ and } c_u \text{ s.t. } P(T \geq c_u) = \alpha/2$ \n
	\n- \n $h(X_1, \ldots, X_n) \leq c_I \text{ or } h(X_1, \ldots, X_n) \geq c_u \text{ if } H_0 \text{ is rejected}$ \n
	\n- \n $h(X_1, \ldots, X_n) \leq c_I \text{ or } h(X_1, \ldots, X_n) \geq c_u \text{ if } H_0 \text{ is rejected}$ \n
	\n- \n $R\text{eject}$ \n
	\n- \n<

1.96

 -1.96

Type I and Type II errors

• Type I error: we falsely reject H_0 α -risk, false positive rate]

- \blacktriangleright E.g., convicting an innocent defendant
- \blacktriangleright we reject H_0 when $p < \alpha$, so this error occur with probability 100 $\alpha\%$
- In this error can be controlled by setting the significance level α to the largest acceptable value
- \triangleright how much is an acceptable value?
- \triangleright A possible solution is to solely report the p-value, which conveys the maximum amount of information and permits decision makers to choose their own level
- Type II error: we falsely do not reject H_0 [β-risk, false negative rate]
	- \blacktriangleright E.g., acquitting a criminal
	- ► $1 \beta = P(\text{Reject } H_0 | H_1 \text{ is true})$ is called the *power* of the test