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Testing independence: discrete data

• Pearson’s Chi-Square test of independence
• X and Y discrete (finite) distributions
• (x1, y1) . . . , (xn, yn) bivariate observed dataset
• H0 : X ,Y independent H1 : X ,Y dependent
• Test statistic:

χ2 =
∑
i ,j

(Oi ,j − Ei ,j)
2

Ei ,j
= n

∑
i ,j

(Oi ,j/n − pi ,.p.,j)
2

pi ,.p.,j
∼ χ2(df )

where Oi ,j is the number of observations of value X = i and Y = j , Ei ,j = npi ,.p.,j where
pi ,. =

∑
j Oi ,j/n and p.,j =

∑
i Oi ,j/n. df = (nx − 1)(ny − 1) where nx (resp., ny ) is the

size of the support of X (resp., Y )
• Exact test when n is small: Fisher’s exact test
• Paired data (e.g., before and after taking a drug): McNemar’s test

See R script
2 / 9

https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
https://en.wikipedia.org/wiki/Fisher%27s_exact_test
https://en.wikipedia.org/wiki/McNemar%27s_test


Testing correlation: continuous data

• Population correlation:

ρ =
E [(X − µX ) · (Y − µY )]

σX · σY
• Pearson’s correlation coefficient:

r =

∑n
i=1(xi − x̄) · (yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2

• Assumption: joint distribution of X ,Y is bivariate normal

• (x1, y1) . . . , (xn, yn) bivariate observed dataset

• H0 : ρ = 0 H1 : ρ 6= 0

• Test statistic:

T =
r
√
n − 1√

1− r2
∼ t(n − 2)

See R script
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Testing AUC-ROC

• Binary classifier f : x → [0, 1] with f (x) score to be positive
• Let yx be the true class of x , either 0 negative or 1 positive

I calibrated classifier if P(YX = 1|f (X ) = p) = p
• ROC Curve

I TPR(p) = P(f (X ) ≥ p|YX = 1) and FPR(p) = P(f (X ) ≥ p|YX = 0)
I ROC Curve is the scatter plot TPR(p) over FPR(p) for p ranging from 1 down to 0
I AUC (or AUC-ROC) is the area below the curve
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Testing AUC-ROC

• Linearly related to Somer’s D correlation index (see Lesson 12)
• AUC (or AUC-ROC) is the probability of correct identification of the order

P(f (W ) < f (Z )|YW = 0,YZ = 1)

• Related to the Wilcoxon rank-sum test W statistics (actually, equal to the U statistics of

Mann–Whitney U test) U = W − n(n+1)
2 , see Lesson 23

• Normal approximation, DeLong’s algorithm or bootstrap for confidence interval estimation
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https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test


Omnibus tests and post-hoc tests

• H0 : θ1 = θ2 = . . . = θk [= 0]

• H1 : θi 6= θj for some i 6= j
• Omnibus tests detect any of several possible differences

I Advantage: no need to pre-specify which treatments are to be compared . . .
. . . and then no need to adjust for making multiple comparisons

• If H1 is rejected (test significant), a post-hoc test to find which θi 6= θj
I Everything to everything post-hoc compare all pairs
I One to everything post-hoc compare a new population to all the others

• We distinguish a few cases:
I Multiple linear regression (normal errors + homogeneity of variances, i.e., Ui ∼ N(0, σ2)):

� F -test + t-test
I Equality of means (normal distributions + homogeneity of variances):

� ANOVA + Tukey/Dunnett
I Equality of means (general distributions):

� Friedman + Nemenyi
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F -test for multiple linear regression

• Y = X · β + U , where Y = (Y1, . . . ,Yn), U = (U1, . . . ,Un), and X = (x1, . . . , xn)
I βT = (α, β1, . . . , βk) and x i = (1, x1i , . . . , x

k
i )

I Unexplained (residual) error SSE = S(β) =
∑n

i=1(yi − x i · β)2

• Null model (or intercept-only model): Y = 1 · α + U
I Total error SST = S(α) =

∑n
i=1(yi − ȳn)2 [residuals of the null model]

• Explained error SSR = SST − SSE =
∑n

i=1(ȳn − x i · β)2

• Coefficient of determination R2 = SSR/SST = 1− SSE/SST
I Is the model useful? Fraction of explained error

• Is the model statistically significant?

• H0 : β1 = . . . = βk = 0 H1 : βi 6= 0 for all i = 1, . . . , k

• Test statistic: F = SSR
SSE

n−k−1
k ∼ F (k, n − k − 1)

See R script
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Equality of means: ANOVA

• H0 : µ1 = µ2 = . . . = µk
• H1 : µ1 6= µ2 for some i 6= j

• datasets y j1, . . . , y
j
nj for j = 1, . . . , k

I responses of k − 1 treatments and 1 control group [one way ANOVA]
I accuracies of k classifiers over nj = n datasets [repeated measures/two way ANOVA]

• Linear regression model over dummy encoded j :

Y = α + β1x1 + . . .+ βk−1xk−1

I α = µk is the mean of the reference group (j = k)
I βj = µj − µk

• F -test: H0 : β1 = . . . = βk = 0, i.e., µj = µk
• Tukey HSD (Honest Significant Differences) is an all-pairs post-hoc test

• Dunnet test is a one-to-everything test

See R script
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https://en.wikipedia.org/wiki/Tukey%27s_range_test
https://en.wikipedia.org/wiki/Dunnett%27s_test


Non-parametric test of equality of means: Friedman

• H0 : µ1 = µ2 = . . . = µk
• H1 : µ1 6= µ2 for some i 6= j
• datasets x j1, . . . , x

j
n for j = 1, . . . , k [paired observations/repeated measures]

I accuracies of k classifiers over n datasets
• Let r ji be the rank of x ji in x1i , . . . , x

k
i

I e.g., j th classifier w.r.t. i th dataset
• Average rank of classifier: Rj = 1

n

∑n
i=1 r

j
i

• Under H0, we have R1 = . . . = Rk and, for n and k large:

χ2
F =

12n

k(k + 1)

 k∑
j=1

R2
j −

k(k + 1)2

4

 ∼ χ2(k)

• Nemenyi test is an all-pairs post-hoc test
• Bonferroni correction is a one-to-everything test
• For unpaired observations, use Kruskal-Wallis test instead of Friedman test

See R script
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https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_one-way_analysis_of_variance

