
National Ph.D. Program in Artificial Intelligence for Society

Statistics for Machine Learning
Lesson 02 - Random Variables

Andrea Pugnana, Salvatore Ruggieri

Department of Computer Science
University of Pisa, Italy

andrea.pugnana@di.unipi.it salvatore.ruggieri@unipi.it

1 / 39

mailto:andrea.pugnana@di.unipi.it
mailto:salvatore.ruggieri@unipi.it


Experiments

• Experiment: roll two independent 4 sided die.

• We are interested in probability of the maximum of the two rolls.
• Modeling so far

▶ Ω = {1, 2, 3, 4} × {1, 2, 3, 4} = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), . . . , (4, 4)}
▶ A = {maximum roll is 2} = {(1, 2), (2, 1), (2, 2)}
▶ P(A) = P({(1, 2), (2, 1), (2, 2)}) = 3/16
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Random variables

• Modeling X : Ω → R
▶ X ((a, b)) = max(a, b)
▶ A = {maximum roll is 2} = {(a, b) ∈ Ω | X ((a, b)) = 2} = X−1(2)
▶ P(A) = P(X−1(2)) = 3/16

▶ We write PX (X = 2)
def
= P(X−1(2)) [Induced probability]
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(Discrete) Random variables

• A random variable is a function X : Ω → R
▶ it transforms Ω into a more tangible sample space R

□ from (a, b) to min(a, b)
▶ it decouples the details of a specific Ω from the probability of events of interest

□ from Ω = {H, T} or Ω = {good, bad} or Ω = . . . to {0, 1}
▶ it is not ’random’ nor ’variable’
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Probability Mass Function (PMF)

• Support or domain of X is dom(X ) = {a ∈ R | P(X = a) > 0} = {a1, a2, . . . ai , . . .}
▶ p(ai ) > 0 for i = 1, 2, . . .
▶ p(a1) + p(a2) + . . . = 1
▶ p(a) = 0 if a ̸∈ dom(X )
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Cumulative Distribution Function (CDF) and CCDF

• F (a) = P(X ∈ {ai | ai ≤ a}) = P(X ≤ a) =
∑

ai≤a p(ai )
• if a ≤ b then F (a) ≤ F (b) [Non-decreasing]
• P(a < X ≤ b) = F (b)− F (a) =

∑
a<ai≤b p(ai )

Complementary cumulative distribution function (CCDF)

F̄ (a) = P(X > a) = 1− P(X ≤ a) = 1− F (a)

• F̄ (a) = P(X ∈ {ai | ai > a}) = P(X > a) =
∑

ai>a p(ai )
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X ∼ U(m,M)

Uniform discrete distribution
A discrete random variable X has the uniform distribution with parameters
m,M ∈ Z such that m ≤ M, if its pmf is given by

p(a) =
1

M −m + 1
for a = m,m + 1, . . . ,M

We denote this distribution by U(m,M).

• Intuition: all integers in [m,M] have equal chances of being observed.

F (a) =
⌊a⌋ −m + 1

M −m + 1
for m ≤ a ≤ M

• Example: classic 6-faces (fair) die (m = 1, M = 6)
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X ∼ Ber(p)

• X models success/failure

• Example: getting head (H,T) when tossing a coin, testing for a disease (infected, not
infected), membership in a set (member, non-member), etc.

• pX is the pmf (to distinguish from parameter p)

• Alternative definition: pX (a) = pa · (1− p)1−a for a ∈ {0, 1}
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Identically distributed (i.d.) random variables

Identically distributed random variables

Two random variables X and Y are said identically distributed (in
symbols, X ∼ Y ), if FX = FY , i.e.,

FX (a) = FY (a) for a ∈ R

• Identically distributed does not mean equal
• Toss a fair coin

▶ let X be 1 for H and 0 for T
▶ let Y be 1− X

• X ∼ Ber(0.5) and Y ∼ Ber(0.5)

• Thus, X ∼ Y but are clearly always different.
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Joint p.m.f.

• For a same Ω, several random variables can be defined
▶ Random variables related to the same experiment often influence one another
▶ Ω = {(i , j) | i , j ∈ 1, . . . , 6} rolls of two dies

□ X ((i , j)) = i + j and Y ((i , j)) = max(i , j)
□ P(X = 4,Y = 3) = P(X−1(4) ∩ Y−1(3)) = P({(3, 1), (1, 3)}) = 2/36

• In general:

PXY (X = a,Y = b) = P({ω ∈ Ω |X (ω) = a and Y (ω) = b}) = P(X−1(a) ∩ Y−1(b))
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Joint and marginal p.m.f.

• Joint distribution function F : R× R → [0, 1]:

FXY (a, b) = P(X ≤ a,Y ≤ b) =
∑

ai≤a,bi≤b

p(ai , bi )

• By generalized additivity, the marginal p.m.f.’s can be derived: [Tabular method]

pX (a) = PX (X = a) =
∑
b

PXY (X = a,Y = b) pY (b) = PY (Y = b) =
∑
a

PXY (X = a,Y = b)

and the marginal distribution function of X as:

FX (a) = PX (X ≤ a) = lim
b→∞

FXY (a, b) FY (b) = PY (Y ≤ b) = lim
a→∞

FXY (a, b)

• Deriving the joint p.m.f. from marginal p.m.f.’s is not always possible!

• Deriving the joint p.m.f. from marginal p.m.f.’s is possible for independent events!
▶ Ω = {1, 2, 3, 4} × {1, 2, 3, 4}, X ((a, b)) = a, Y ((a, b)) = b
▶ P(X = 1,Y = 2) = 1/16 = 1/4 · 1/4 = P(X = 1) · P(Y = 2)
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Conditional distribution

Conditional distribution
Consider the joint distribution PXY of X and Y . The conditional distribution of X
given Y ∈ B with PY (Y ∈ B) > 0, is the function FX |Y∈B : R → [0, 1]:

FX |Y∈B(a) = PX |Y (X ≤ a|Y ∈ B) =
PXY (X ≤ a,Y ∈ B)

PY (Y ∈ B)
for −∞ < a < ∞

• Distribution of X after knowing Y ∈ B.

• Chain rule: PXY (X ≤ a,Y ∈ B) = PX |Y (X ≤ a|Y ∈ B)PY (Y ∈ B)

• What if the distribution does not change w.r.t. the prior PX ? 12 / 39



Independence of two random variables

Independence X ⊥⊥ Y

A random variable X is independent from a random variable Y , if for all PY (Y ≤ b) > 0:

PX |Y (X ≤ a|Y ≤ b) = PX (X ≤ a) for −∞ < a < ∞

• Properties
▶ X ⊥⊥ Y iff PXY (X ≤ a,Y ≤ b) = PX (X ≤ a) · PY (Y ≤ b) for −∞ < a, b < ∞
▶ X ⊥⊥ Y iff Y ⊥⊥ X [Symmetry]

• For X ,Y discrete random variables:
▶ X ⊥⊥ Y iff PXY (X = a,Y = b) = PX (X = a) · PY (Y = b) for −∞ < a, b < ∞
▶ X ⊥⊥ Y iff PXY (X ∈ A,Y ∈ B) = PX (X ∈ A) · PY (Y ∈ B) for A,B ⊆ R
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Sum of independent discrete random variables

• Proof (sketch).

P(Z = c) =
∑
j

P(Z = c |Y = bj) · P(Y = bj)

=
∑
j

P(X = c − bj |Y = bj) · P(Y = bj)

=
∑
j

P(X = c − bj)P(Y = bj)
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Independence of multiple random variables

Independence (factorization formula)

Random variables X1, . . . ,Xn are independent, if:

PX1,...,Xn(X1 ≤ a1, . . . ,Xn ≤ an) =
n∏

i=1

PXi (Xi ≤ ai ) for −∞ < a1, . . . , an < ∞

• X1, . . . ,Xn discrete random variables are independent iff:

PX1,...,Xn(X1 = a1, . . . ,Xn = an) =
n∏

i=1

PXi (Xi = ai ) for −∞ < a1, . . . , an < ∞

• Definition: X1, . . . ,Xn are i.i.d. (independent and identically distributed) if X1, . . . ,Xn are
independent and Xi ∼ F for i = 1, . . . , n for some distribution F
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X ∼ Bin(n, p)

• X models the number of successes in n Bernoulli trials (How many H’s when tossing n coins?)
• Intuition: for X1,X2, . . . ,Xn such that Xi ∼ Ber(p) and independent (i.i.d.):

X =
n∑

i=1

Xi ∼ Bin(n, p)

• pk · (1− p)n−k is the probability of observing first k H’s and then n − k T’s
•

(
n
k

)
= n!

k!(n−k)! number of ways to choose the first k variables [Binomial coefficient]
• pX (k) computationally expensive to calculate (no closed formula, but approximation/bounds)
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X ∼ Geo(p)

• X models the number of Bernoulli trials before a success (how many tosses to have a H?)

• Intuition: for X1,X2, . . . such that Xi ∼ Ber(p) i.i.d.:

X = mini (Xi = 1) ∼ Geo(p)

• F̄ (a) = P(X > a) = (1− p)⌊a⌋

• F (a) = P(X ≤ a) = 1− F̄ (a) = 1− (1− p)⌊a⌋
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You cannot always lose

• H is 1, T is 0, 0 < p < 1

• Bn = {T in the first n-th coin tosses}
• P(∩n≥1Bi ) = ?

• X ∼ Geom(p)

• P(Bn) = P(X > n) = (1− p)n

• P(∩n≥1Bn) = limn→∞P(Bn) = limn→∞(1− p)n = 0

• P(∩n≥1Bn) = limn→∞P(Bn) for Bn non-increasing [σ-additivity, see Lesson 01]
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But if you lost so far, you can lose again

Memoryless property

For X ∼ Geo(p), and n, k = 0, 1, 2, . . .

P(X > n + k |X > k) = P(X > n)

Proof

P(X > n + k |X > k) =
P({X > n + k} ∩ {X > k})

P({X > k})

=
P({X > n + k})
P({X > k})

=
(1− p)n+k

(1− p)k

= (1− p)n = P(X > n)
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Sum of independent random variables (repetita iuvant)

• Example:

▶ For X ∼ Bin(n, p) and Y ∼ Bin(m, p), Z ∼ Bin(n +m, p)
▶ For X ∼ Geo(p) (days radio 1 breaks) and Y ∼ Geo(p) (days radio 2 breaks):

pZ (X + Y = k) =
k−1∑
l=1

pX (l) · pY (k − l) = (k − 1)p2(1− p)k−2
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X ∼ NBin(n, p)

Negative binomial (or Pascal distribution)

A discrete random variable X has a negative binomial with parameters n and p,
where n = 0, 1, 2, . . . and 0 < p ≤ 1, if its probability mass function is given by

pX (k) = P(X = k) =

(
k + n − 1

k

)
(1− p)k · pn for k = 0, 1, 2, . . .

• X models the number of failures before the n-th success in Bernoulli trials (how many T’s to have
n H’s?)

• Intuition: for X1,X2, . . . ,Xn such that Xi ∼ Geo(p) i.i.d.:

X =
n∑

i=1

Xi − n ∼ NBin(n, p)

• (1− p)k · pn is the probability of observing first k T’s and then n H’s
•

(
k+n−1

k

)
= (k+n−1)!

k!(n−1)! number of ways to choose the first k variables among k + n − 1 (the last one

must be a success!)
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X ∼ Poi(µ)

• X models the number of events in a fixed interval if these events occur with a known
constant mean rate µ and independently of the last event

▶ telephone calls arriving in a system
▶ number of patients arriving at an hospital
▶ customers arriving at a counter

• µ denotes the mean number of events
• Bin(n, µ/n) is the number of successes in n trials, assuming p = µ/n, i.e., p · n = µ
• When n → ∞: Bin(n, µ/n) → Poi(µ) [Law of rare events]

▶ Number of typos in a book, number of cars involved in accidents, etc.
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The discrete Bayes’ rule

Definition. Conditional p.m.f. of X given Y = b with PY (Y = b) > 0

pX |Y (a|b) =
pXY (a, b)

pY (b)
i.e., PX |Y (X = a|Y = b) =

PXY (X = a,Y = b)

PY (Y = b)

Discrete Bayes’ rule:

pX |Y (x |y) =
pY |X (y |x)pX (x)

pY (y)
=

pY |X (y |x)pX (x)∑
a∈dom(X ) pY |X (y |a)pX (a)
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From Discrete to Continuous

• Let X ∼ U(0, 1)
▶ p(0) = p(1) = 1/2

• Expand the support: let to X ∼ U(0, n)
▶ p(0) = . . . = p(i) = . . . p(n) = 1/(n+1)

• Ok for n ∈ N, but for n → ∞, we have:

p(a) = P(X = a) = 0 for all a

which breaks the properties of p.m.f.! [Trascurable but possible events]

• Since |R| = 2ℵ0 > ℵ0 = |N|, n = ∞ is reached when considering the continuum!

Conclusion: the idea of probability mass function does not extend to the continuum!
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Continuous random variables
• We cannot assign a positive “mass” to a real number, but we can assign it to an interval!

• Support of X is dom(X ) = {x ∈ R | f (x) > 0}
• F (a) = P(X ≤ a) =

∫ a

−∞ f (x)dx [Cumulative Distribution Function]

• P(X ∈ A) =
∫
x∈A

f (x)dx for A ⊆ R measurable

▶ There exist non-measurable subsets of R, i.e., for which we cannot assign a mass
▶ Borel sets are measurable: intervals over R closed under countable union and complement
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Density function

P(X = a) ≤ P(a− ϵ ≤ X ≤ a+ ϵ) =

∫ a+ϵ

a−ϵ

f (x)dx = F (a+ ϵ)− F (a− ϵ)

▶ for ϵ → 0, P(a− ϵ ≤ X ≤ a+ ϵ) → 0, hence P(X = a) = 0

• What is the meaning of the density function f (x) then?
▶ f (a) is a (relative to other points) measure of how likely X will be near a
▶ “probability mass per unit length” around a: f (a) · 2ϵ

• Discrete vs Continuous Random Variables [F(x) is a continuous function for continuous r.v.]

F (a) =
∑
ai≤a

p(ai ) p(ai ) = F (ai )− F (ai−1) F (x) =

∫ x

−∞
f (y)dy f (x) =

d

dx
F (x)
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X ∼ U(α, β)

• F (x) =
∫ x
−∞ f (x)dx = 1

β−α

∫ x
α 1dx = x−α

β−α for α ≤ x ≤ β

• Differently from p.m.f.’s, densities can be larger than 1 (and arbitrarily large)
▶ E.g., for U(0, 0.5) we have f (x) = 2
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X ∼ Exp(λ)

• For X ∼ Geo(p), we have: F̄ (x) = P(X > x) = (1− p)⌊x⌋ for x ≥ 0

• extend to reals: F̄ (x) = P(X > x) = (1− p)x = ex ·log(1−p) = e−λx

for λ = −log(1− p)• f (x) = dF
dx (x) = −dF̄

dx (x) = λe−λx F (x) = P(X ≤ x) = 1− e−λx

• λ is the rate of events in a Poisson point process, i.e., a process in which events occur
continuously and independently at a constant average rate, e.g.,

▶ λ = 1/10 number of bus arrivals per minute, or 1/λ = 10 minutes to wait for bus arrival
▶ P(X > 1) = e−λ = 0.9048 probability of waiting more than 1 minute.
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X ∼ Exp(λ)

• Plausible and empirically adequate model for:
▶ time until a radioactive particle decays, time it takes before your next telephone call, . . .
▶ time until default (on payment to company debt holders) in reduced-form credit risk

modeling, . . .
▶ time between animal roadkills, time between bank teller serves customers, . . .
▶ monthly and annual maximum values of daily rainfall, (some types of) surgery duration, . . .

• Exponential is memoryless: P(X > s + t|X > s) = e−λ(s+t)/e−λs = e−λt = P(X > t)
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X ∼ N (µ, σ2)

• “Normal” means “typical” or “common”

• Also called Gaussian distribution, after Carl Friedrich Gauss, but introduced by De Moivre

• Standard Normal/Gaussian is N (0, 1)

▶ f (x) = 1√
2π
e−

x2

2 sometimes written as ϕ(x)

▶ No closed form for F (a) = Φ(a) =
∫ a

−∞ ϕ(x)dx

• Binomial approximation by a Normal distribution
▶ Bin(n, p) ≈ N (np, np(1− p)) for n large and 0 ≪ p ≪ 1 [De Moivre–Laplace theorem]
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Quantiles

• Median mX is q0.5
• If F () is strictly increasing, qp = F−1(p)

• E.g., for Exp(λ), F (a) = 1− e−λx , hence F−1(p) = 1
λ log 1

(1−p)

• General definition (also for discrete r.v.):

qp = inf
x
{P(X ≤ x) ≥ p}
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Joint distributions: continuous random variables

• The marginal density functions of X and Y are:

fX (x) =

∫ ∞

−∞
f (x , y)dy fY (y) =

∫ ∞

−∞
f (x , y)dx

• Moreover, as in the univariate case:

F (a, b) =

∫ a

−∞

∫ b

−∞
f (x , y)dxdy f (x , y) =

d

dx

d

dy
F (x , y) =

d2

dxdy
F (x , y)
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Recalling conditional distribution: it applies to continuous r.v.’s

Conditional distribution
Consider the joint distribution PXY of X and Y . The conditional distribution of X
given Y ∈ B with PY (Y ∈ B) > 0, is the function FX |Y∈B : R → [0, 1]:

FX |Y∈B(a) = PX |Y (X ≤ a|Y ∈ B) =
PXY (X ≤ a,Y ∈ B)

PY (Y ∈ B)
for −∞ < a < ∞

• Distribution of X after knowing Y ∈ B.

• Chain rule: PXY (X ≤ a,Y ∈ B) = PX |Y (X ≤ a|Y ∈ B)PY (Y ∈ B)

• What if the distribution does not change w.r.t. the prior PX ? 33 / 39



Independence of two random variables

Independence X ⊥⊥ Y

A random variable X is independent from a random variable Y , if for all P(Y ≤ b) > 0:

PX |Y (X ≤ a|Y ≤ b) = PX (X ≤ a) for −∞ < a < ∞

• Properties
▶ X ⊥⊥ Y iff PXY (X ≤ a,Y ≤ b) = PX (X ≤ a) · PY (Y ≤ b) for −∞ < a, b < ∞
▶ X ⊥⊥ Y iff Y ⊥⊥ X [Symmetry]

• For X ,Y continuous random variables:
▶ X ⊥⊥ Y iff fXY (x , y) = fX (x) · fY (y) for −∞ < x , y < ∞
▶ X ⊥⊥ Y iff PXY (X ∈ A,Y ∈ B) = PX (X ∈ A) · PY (Y ∈ B) for A,B ⊆ R measurable
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Independence of multiple random variables

Independence (factorization formula)

Random variables X1, . . . ,Xn are independent, if:

PX1,...,Xn(X1 ≤ a1, . . . ,Xn ≤ an) =
n∏

i=1

PXi (Xi ≤ ai ) for −∞ < a1, . . . , an < ∞

• X1, . . . ,Xn continuous random variables are independent iff:

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

fXi (xi ) for −∞ < x1, . . . , xn < ∞

• Definition: X1, . . . ,Xn are i.i.d. (independent and identically distributed) if X1, . . . ,Xn are
independent and Xi ∼ F for i = 1, . . . , n for some distribution F
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Sum of independent continuous random variables

• The integral is called the convolution of fX () and fY ()
• X ,Y ∼ Exp(λ), Z = X + Y , X ,Y ,Z ≥ 0 implies 0 ≤ Y ≤ Z

fZ (z) =

∫ ∞

−∞
λe−λ(z−y)λe−λy I{0≤y≤z}dy = λ2e−λz

∫ z

0
1dy = λ(λz)e−λz

• Z = X1 + . . .+ Xn for Xi ∼ Exp(λ) independent: [Earlang Erl(n, λ) distribution]

fZ (z) =
λ(λz)n−1e−λz

(n − 1)!
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Gam(α, λ)

• Let λ be the average rate of an event, e.g., λ = 1/10 number of buses in a minute

▶ The waiting time to see one event is exponentially distributed. E.g., probability of waiting x
minutes to see one bus.

▶ The waiting time to see n events is Erlang distributed. E.g., probability of waiting x minutes
to see n buses.

• Extends Erl(n, λ) from n ∈ N+ to α ∈ R+ by Euler’s Γ(α)

▶ The waiting time to see α quantities is Gamma distributed. E.g., probability of waiting x
minutes to see α volume of rain.
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Common distributions

• Probability distributions at Wikipedia

• Probability distributions in R

• C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition
Wiley
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The continuous Bayes’ rule

• Definition. Conditional density of X given Y = y with fY (y) > 0:

fX |Y (x |y) =
fXY (x , y)

fY (y)

• Continuous Bayes’ rule:

fX |Y (x |y) =
fY |X (y |x)fX (x)

fY (y)
=

fY |X (y |x)fX (x)∫∞
−∞ fY |X (y |t)fX (t)dt
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