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e Experiment: roll two independent 4 sided die.

® We are interested in probability of the maximum of the two rolls.

® Modeling so far
» Q=1{1,2,3,4} x {1,2,3,4} = {(1,1),(1,2),(1,3),(1,4),(2,1),...,(4,4)}
» A= {maximum roll is 2} = {(1,2),(2,1),(2,2)}
> P(A) = P({(1,2),(2,1),(2,2)}) = 316
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Random variables

4 Random Variable: 4 Random Variable:
— X = Maximum Roll pxl) X = Maximum Roll
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Sample Space:

Sample Space:
Pairs of Rolls

Pairs of Rolls

® Modeling X : Q - R

X((a, b)) = max(a, b)

» A= {maximum roll is 2} = {(a, b) € Q | X((a, b)) =2} = X71(2)
P(A) = P(X71(2)) = 316

We write Px (X = 2) def P(X71(2)) |Induced probability]

v

v
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(Discrete) Random variables

Random Variable X

Sample Space
Q

X
Real Number Line

® A random variable is a function X : Q —» R
» it transforms 2 into a more tangible sample space R
0 from (a, b) to min(a, b)
» it decouples the details of a specific 2 from the probability of events of interest
O from Q = {H, T} or Q = {good, bad} or @ = ... to {0,1}
» it is not 'random’ nor 'variable’

DEFINITION. Let Q be a sample space. A discrete random variable
is a function X :  — R that takes on a finite number of values
ay,as,...,a, or an infinite number of values ay,as, . ...
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Probability Mass Function (PMF)

DEFINITION. The probability mass function p of a discrete random
variable X is the function p : R — [0, 1], defined by

pla) =P(X =a) for —oco<a< oco.

® Support or domain of X is dom(X)={ac€ R | P(X =a) >0} ={a1,a2,...4a;,...}
» p(a;) >0fori=12 ...
> p(ar) +p(az) +...=1
» p(a) =0 if a & dom(X)
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Cumulative Distribution Function (CDF) and CCDF

DEFINITION. The distribution function F' of a random variable X
is the function £ : R — [0, 1], defined by

F(a) =P(X <a) for —o0o<a< 0.

Fla)=P(X e{ai| ai<a})=P(X <a) =3, ,p(ai)
if a < b then F(a) < F(b) -
Pla< X <b)=F(b)— F(a)= ZKar_pr(a,-)

Complementary cumulative distribution function (CCDF)

[Non-decreasing]

Fla)=P(X>a)=1-P(X<a)=1-F(a)

Fa)=P(X €fai|ai>a})=P(X>a)=3,.,p(a)
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X ~ U(m, M)

Uniform discrete distribution

A discrete random variable X has the uniform distribution with parameters
m, M € Z such that m < M, if its pmf is given by

p(a):m fora:m,m+1,...,M

We denote this distribution by U(m, M).

® Intuition: all integers in [m, M] have equal chances of being observed.

— 1
F(a):L,\‘El/lj_r,:j1 form<a<M

e Example: classic 6-faces (fair) die (m=1, M = 6)
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DEFINITION. A discrete random variable X has a Bernoulli distri-
bution with parameter p, where 0 < p < 1, if its probability mass
function is given by

px(1)=P(X=1)=p and px(0)=PX =0)=1-0p.

We denote this distribution by Ber(p).

X models success/failure

Example: getting head (H,T) when tossing a coin, testing for a disease (infected, not
infected), membership in a set (member, non-member), etc.

px is the pmf (to distinguish from parameter p)
Alternative definition: px(a) = p?- (1 — p)1=2 for a € {0,1}
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|dentically distributed (i.d.) random variables

Identically distributed random variables

Two random variables X and Y are said identically distributed (in
symbols, X ~ Y), if Fx = Fy, i.e.,

Fx(a) = Fy(a) foraeR

Identically distributed does not mean equal
Toss a fair coin

» let X be1for Hand 0 for T
» let Ybel—X

X ~ Ber(0.5) and Y ~ Ber(0.5)
Thus, X ~ Y but are clearly always different.
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® For a same (2, several random variables can be defined

» Random variables related to the same experiment often influence one another
» Q={(i,j) | i,jel,...,6} rolls of two dies

0 X((1,)) = i+ and Y((i,j)) = max(i. )
0 P(X =4, =3) = P(X"(4)n Y 1(3)) = P({(3,1),(1,3)}) = /3

® In general:
Pxy(X =a,Y = b) = P({w € Q |X(w) = aand Y(w) = b}) = P(X"1(a) N Y~L(b))

DEFINITION. The joint probability mass function p of two discrete
random variables X and Y is the function p : R? — [0, 1], defined by

p(a,b) =P(X =a,Y =0) for —oco<a,b< .
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Joint and marginal p.m.f.

® Joint distribution function F : R x R — [0, 1]:

Fxy(a,b)=P(X <a,Y<b)= > pla,b)
a;<a,b;<b

® By generalized additivity, the marginal p.m.f.'s can be derived: | Tabular method]

px(a) = Px(X = a) = Z Pxy(X=a, Y =b) py(b)=Py(Y=0b)= Z Pxy(X =a, Y =b)
b a

and the marginal distribution function of X as:

Fx(a) = Px(X < a) = b“—>moo ny(a, b) Fy(b) = Py(y < b) = ain;o ny(a, b)

® Deriving the joint p.m.f. from marginal p.m.f.'s is not always possible!

® Deriving the joint p.m.f. from marginal p.m.f.'s is possible for independent events!
» Q0=1{1,2,3,4} x {1,2,3,4}, X((a,b)) = a, Y((a,b)) = b
» P(X=1,Y =2)=116="1a-Ya=P(X =1)- P(Y = 2)
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Conditional distribution

Conditional distribution

Consider the joint distribution Pxy of X and Y. The conditional distribution of X
given Y € B with Py(Y € B) > 0, is the function Fxycg : R — [0,1]:

ny(X < a, Y € B)
Py(Y € B)

Fx|ves(a) = Pxjy(X < alY € B) = for —oco<a< o

P)qA(X|A)

Sample Space
Q

® Distribution of X after knowing Y € B.
® Chain rule: Pxy(X <a,Y € B) = Pxjy(X < a|Y € B)Py(Y € B)
® \What if the distribution does not change w.r.t. the prior Px? 12/39



Independence of two random variables

Independence X 1L Y

A random variable X is independent from a random variable Y, if for all Py(Y < b) > 0:

Pxiy(X <alY <b)=Px(X<a) for —co<a<oo

® Properties

» X UL Y iff Pxy(X<a,Y<b)=Px(X<a) -Py(Y<b) for—oo<ab<oo

» X WL Yiff Y 1L X [Symmetry]
® For X, Y discrete random variables:

» X L Yiff Pxy(X=a,Y=b)=Px(X=a)-Py(Y=5b) for—oco<ab<oo

» X L Yiff Pxy(X€A Y eB)=Px(XeA)-Py(YEB) forABCR
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Sum of independent discrete random variables

® Proof (sketch).

ADDING TWO INDEPENDENT DISCRETE RANDOM VARIABLES. Let X
and Y be two independent discrete random variables, with probabil-
ity mass functions px and py. Then the probability mass function
pz of Z = X +Y satisfies

z(c) = ZPX(C —bj)py (b)),

where the sum runs over all possible values b; of Y.

3
N
[

2
[

Y P(Z=clY =b)-P(Y = b)
- ZP(X:c—bj\Yzbj)-P(Yzbj)

= Y P(X=c—b)P(Y =b)
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Independence of multiple random variables

Independence (factorization formula)

Random variables Xi, ..., X, are independent, if:

n
'DX17---,Xn(X1 < a, ... ,X,, < a,,) = HPXi(Xi < a,-) for —oo < a,...,ap <00
i=1

® Xi,...,X, discrete random variables are independent iff:

n
Px,..x,(X1=a1,....,. X, =a,) = HPX,.(X,- =3;) for —oco<ap,...,a, <0
i=1

® Definition: Xi,..., X, are i.i.d. (independent and identically distributed) if Xi,..., X, are
independent and X; ~ F for i = 1,..., n for some distribution F
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DEFINITION. A discrete random variable X has a binomial distri-
bution with parameters n and p, where n = 1,2,... and 0 < p < 1,
if its probability mass function is given by

n

px(k)=PX =k) = (k>pk (1 7]))71—1@ for k=0,1,...,n.

We denote this distribution by Bin(n, p).

® X models the number of successes in n Bernoulli trials (How many H’s when tossing n coins?)
® Intuition: for Xi, Xz, ..., X, such that X; ~ Ber(p) and independent (i.i.d.):
X = ZX,- ~ Bin(n, p)
i=1
e pk. (1 — p)"~kis the probability of observing first k H's and then n — k T's
(1) = Wik), number of ways to choose the first k variables [Binomial coeificient]
[

px (k) computationally expensive to calculate (no closed formula, but approximation/bounds)
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DEFINITION. A discrete random variable X has a geometric distri-
bution with parameter p, where 0 < p < 1, if its probability mass
function is given by

px(k)=P(X=k)=1-p)f'p fork=12 ...

We denote this distribution by Geo(p).

X models the number of Bernoulli trials before a success (how many tosses to have a H?)
Intuition: for X1, Xy, ... such that X; ~ Ber(p) i.i.d.:

X = min; (X;i = 1) ~ Geo(p)
~Fa)=1-(1-p)*
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You cannot always lose

e Hisl1l, Tis0,0<p<1

B, = {T in the first n-th coin tosses}

P(Np>1Bi) =7

® X ~ Geom(p)

P(Ba) = P(X > n) = (1— p)"

P(Nn1Bn) = liMn—ys P(Bn) = limn_yse(1 — p)" = 0

P(Np>1Bn) = limp_oo P(By) for B, non-increasing [o-additivity, see Lesson 01]
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But if you lost so far, you can lose again

Memoryless property
For X ~ Geo(p), and n,k =0,1,2,...

P(X > n+ kX > k) = P(X > n)

Proof

P{X >n+k}n{X > k})
P{X > k})
P({X > n+ k})
P({X > k})
(1—p)mt*
(1-p)*
= (1-p)"=P(X>n)

P(X >n+klX>k) =
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Sum of independent random variables (repetita iuvant)

ADDING TWO INDEPENDENT DISCRETE RANDOM VARIABLES. Let X
and Y be two independent discrete random variables, with probabil-
ity mass functions px and py. Then the probability mass function
pz of Z = X +Y satisfies

z(c) = pr (¢ = bj)py (bs),

where the sum runs over all possible values b; of Y.

® Example:
» For X ~ Bin(n,p) and Y ~ Bin(m, p), Z ~ Bin(n+ m, p)
» For X ~ Geo(p) (days radio 1 breaks) and Y ~ Geo(p) (days radio 2 breaks):

k—1
pz(X+Y =k)=> px(I)-py(k—1) = (k—1)p*(1 - p)*2
=1
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Negative binomial (or Pascal distribution)

A discrete random variable X has a negative binomial with parameters n and p,
where n =0,1,2,... and 0 < p < 1, if its probability mass function is given by

px(K) = P(X = k) = <k+Zl>(lp)k-p" for k=0,1,2,...

X models the number of failures before the n-th success in Bernoulli trials (how many T's to have
n H's?)
Intuition: for X1, Xy, ..., X, such that X; ~ Geo(p) i.i.d.:

X = ZX,- — n ~ NBin(n, p)
i=1
(1 — p)k - p" is the probability of observing first k T's and then n H's
() = (:!J(“::ll))!! number of ways to choose the first k variables among k + n — 1 (the last one
must be a success!)
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DEFINITION. A discrete random variable X has a Poisson distribu-
tion with parameter p, where p > 0 if its probability mass function p
is given by

X
p(k) = P(X =k) = %e*ﬂ for k=0,1,2,....

We denote this distribution by Pois(pu).

X models the number of events in a fixed interval if these events occur with a known
constant mean rate p and independently of the last event
> telephone calls arriving in a system
» number of patients arriving at an hospital
» customers arriving at a counter
1 denotes the mean number of events
Bin(n,#/n) is the number of successes in n trials, assuming p = #/n, i.e., p-n=p
When n — oo: Bin(n,#/n) — Poi(L) [Law of rare events]
» Number of typos in a book, number of cars involved in accidents, etc.
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The discrete Bayes' rule

BAYES’ RULE. Suppose the events C, Ca, ..., C,, are disjoint and
C1UCyU---UC, = . The conditional probability of C;, given an
arbitrary event A, can be expressed as:

P(A|C;) - P(Cy)
(A]CP(Cr) + P(A| C2)P(Co) + -+ + P(A]| Cr)P(C)”

P(Ci|A) = B

Definition. Conditional p.m.f. of X given Y = b with Py(Y =b) >0

pr(a, b) . ny(X = a, Y = b)
alp) = ——"+% e, P X =alY=b)=
Discrete Bayes' rule:
pxty (x]y) = PY\X(Y|X)pX(X) _ PY\X(YIX)pX(X)
X|Y = =
| py(y) Zaedom(X) Py x(vla)px(a)
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From Discrete to Continuous

® Let X ~ U(0,1)
> p(0) = p(1) =1/
® Expand the support: let to X ~ U(0, n)
» p(0) =...=p(i) =...p(n) = Y(nt+1)
® Ok for n € N, but for n — 0o, we have:

p(a)=P(X =a)=0 foralla

which breaks the properties of p.m.f.! [Trascurable but possible events]

® Since |R| = 2% > Ry = |N|, n = oo is reached when considering the continuum!

Conclusion: the idea of probability mass function does not extend to the continuum!
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Continuous random variables

® \We cannot assign a positive “mass” to a real number, but we can assign it to an interval!

DEFINITION. A random variable X is continuous if for some function
f R — R and for any numbers a and b with a < b,

Pla< X <b) = bf(.T) dez.

a

The function f has to satisfy f(z) > 0 for all z and f:x; flz)dz =1.
We call f the probability density function (or probability density)
of X.

® Support of X is dom(X) = {x € R | f(x) > 0}

* Fla)=P(X <a)=["__ f(x)dx [Cumulative Distribution Function]
* P(X € A)= [ ,f(x)dx for AC R measurable

» There exist non-measurable subsets of R, i.e., for which we cannot assign a mass
» Borel sets are measurable: intervals over R closed under countable union and complement
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Density function

ate
P(X:a)SP(a—egXSa—i—e):/ f(x)dx = F(a+¢€)— F(a—¢)

a—e
» fore -0, Pla—e< X <a+e)—0, hence P(X=2a)=0
® What is the meaning of the density function f(x) then?

» f(a) is a (relative to other points) measure of how likely X will be near a
» “probability mass per unit length” around a: f(a) - 2¢

f\'\u)
® Discrete vs Continuous Random Variables [F(x) is a continuous function for continuous r.v.]
x d
Fa) = Y (@) pla) = Fa)—Farms)  FO)= [ f)dy 100 = SF()

ai<a
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DEFINITION. A continuous random variable has a wniform distribu-
tion on the interval o, (] if its probability density function f is given
by f(z) = 0 if 2 is not in [o, 5] and

1
i) = T fora <z < p.

We denote this distribution by U(c, 3).

* F(x)= [ f(x)dx = ﬁf; ldx = =0 fora < x < f8
e Differently from p.m.f.'s, densities can be larger than 1 (and arbitrarily large)
» E.g., for U(0,0.5) we have f(x) =2
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® For X ~ Geo(p), we have: F(x) =P(X >x)=(1-p)) forx>0
® extend to reals: F(x) = P(X > x) = (1 — p)X = e</o8(1=P) — g=2x

for A = —log(1 — p)

o f(x)=E(x)=—E(x)=re ™ Fx)=PX<x)=1-—e

DEFINITION. A continuous random variable has an exzponential dis-
tribution with parameter \ if its probability density function f is
given by f(z) =0 if x < 0 and

f(z) =Xe ™™ for z > 0.

We denote this distribution by Ezp(\).

® ) is the rate of events in a Poisson point process, i.e., a process in which events occur
continuously and independently at a constant average rate, e.g.,

» A\ = 1/10 number of bus arrivals per minute, or 1/x = 10 minutes to wait for bus arrival
» P(X > 1) = e = 0.9048 probability of waiting more than 1 minute.
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DEFINITION. A continuous random variable has an exponential dis-
tribution with parameter \ if its probability density function f is
given by f(z) =0 if x < 0 and

f(z)=Xe™?*  for z > 0.

We denote this distribution by Exp(A).

® Plausible and empirically adequate model for:

» time until a radioactive particle decays, time it takes before your next telephone call, ...

» time until default (on payment to company debt holders) in reduced-form credit risk
modeling, ...

» time between animal roadkills, time between bank teller serves customers, ...
» monthly and annual maximum values of daily rainfall, (some types of) surgery duration, ...

® Exponential is memoryless: P(X > s+ t|X > s) = e X7 /e=2s = 7t = P(X > t)
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X ~ N(u,0°%)

DEFINITION. A continuous random variable has a normal distribu-
tion with parameters p and o > 0 if its probability density function

f is given by

()
AN for —oo <z < o0.

fx) =

e
o/ 2T

We denote this distribution by N(u,0?).

“Normal” means “typical” or “common”
Also called Gaussian distribution, after Carl Friedrich Gauss, but introduced by De Moivre

Standard Normal/Gaussian is N'(0,1)

X

» f(x)= ﬁe‘? sometimes written as ¢(x)
» No closed form for F(a) = ®(a) = ffoo o(x)dx

® Binomial approximation by a Normal distribution
» Bin(n, p) ~ N (np,np(1 — p)) for nlarge and 0 < p <1 [De Moivre-Laplace theorem]
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DEFINITION. Let X be a continuous random variable and let p be a
number between 0 and 1. The pth quantile or 100pth percentile of
the distribution of X is the smallest number g, such that

F(g) =P(X < gq) =p.

The median of a distribution is its 50th percentile.

® Median myx is qo5

If F() is strictly increasing, q, = F~1(p)
E.g., for Exp(\), F(a) =1 — e ™, hence F~1(p) = % log 12

General definition (also for discrete r.v.):
qp = inf{P(X < x) > p}
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Joint distributions: continuous random variables

DEFINITION.  Random variables X and Y have a joint continuous
distribution if for some function f : R> — R and for all numbers
a1, as and by, by with a1 < by and as < bs,

b1 pbo
P(G1SX§b1,a2§Y§b2):/ / f(x,y) dedy.
Jay a

e

The functlon f has to satisfy f(z,y) > 0 for all  and y, and
= 7 flr,y)dedy = 1. We call f the joint probability density
functwn of X and Y.

® The marginal density functions of X and Y are:
500 = [ ndy R0 = [ fexnex
® Moreover, as in the univariate case:

a b d d d?
Fab)= [ [ flayddy  Fly) = S Floy) = g Flxy)
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Recalling conditional distribution: it applies to continuous r.v.’s

Conditional distribution

Consider the joint distribution Pxy of X and Y. The conditional distribution of X
given Y € B with Py(Y € B) > 0, is the function Fx|ycg : R — [0,1]:

ny(X <a, Y € B)
Py(Y € B)

Fx|yEB(a)=Px|y(X§a|Y€B): for —c0o<a< o

PxaXIA)

Sample Space
Q

® Distribution of X after knowing Y € B.
® Chain rule: Pxy(X < a,Y € B) = Px|y(X < a|Y € B)Py(Y € B)
® What if the distribution does not change w.r.t. the prior Px?
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Independence of two random variables

Independence X 1L Y

A random variable X is independent from a random variable Y, if for all P(Y < b) > 0:

Pxiy(X <alY <b)=Px(X<a) for —co<a<oo

® Properties

» X UL Y iff Pxy(X<a,Y<b)=Px(X<a) -Py(Y<b) for—oo<ab<oo

» X L YiffYy 1L X [Symmetry]
® For X, Y continuous random variables:

» X 1L Y iff fxy(x,y) = fx(x) - fy(y) for —oo < x,y < o0

» X UL Yiff Pxy(X € A Y € B)=Px(X € A)- Py(Y € B) for A, B C R measurable
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Independence of multiple random variables

Independence (factorization formula)

Random variables Xi, ..., X, are independent, if:

n
'DX17---,Xn(X1 < a, ... ,X,, < a,,) = HPXi(Xi < a,-) for —oo < a,...,ap <00
i=1

® Xi,...,X, continuous random variables are independent iff:
n
X x(X1, o Xn) = H fx(xi) for —oo < xp,...,xp <00
i=1

® Definition: Xi,..., X, are i.i.d. (independent and identically distributed) if X,..., X, are
independent and X; ~ F for i = 1,..., n for some distribution F
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Sum of independent continuous random variables

ADDING TWO INDEPENDENT CONTINUOUS RANDOM VARIABLES.
Let X and Y be two independent continuous random variables, with
probability density functions fx and fy. Then the probability den-
sity function fz of Z = X + Y is given by

120 = [ IxG-prway
for —oo < 2 < o0.

® The integral is called the convolution of fx() and fy()
e X, Y ~Exp(A),Z=X+Y, X,Y,Z>0implies0<Y <Z

fz(z) = / Ae MEINe Moo oy dy = N2e / ldy = M(Az)e ™

o 0
® Z=X1+...4+ X, for Xi ~ Exp()\) independent: [Earlang Erl(n, \) distribution]
)\()\Z)n—le—/\z
Fz)= 2\ €
2(2) (n—1)!
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® Let X be the average rate of an event, e.g., A = 1/10 number of buses in a minute

» The waiting time to see one event is exponentially distributed. E.g., probability of waiting x

minutes to see one bus.
» The waiting time to see n events is Erlang distributed. E.g., probability of waiting x minutes

to see n buses.

DEFINITION. A continuous random variable X has a gamma dis-
tribution with parameters o > 0 and A > 0 if its probability density
function f is given by f(z) =0 for 2 < 0 and

o A(Az) e e )
fx) = 7““) forz >0,

where the quantity T'(a) is a normalizing constant such that f inte-
grates to 1. We denote this distribution by Gam(c, \).

® Extends Erl(n,\) from n € N to o € Rt by Euler’s ['(«)

» The waiting time to see o quantities is Gamma distributed. E.g., probability of waiting x
minutes to see o volume of rain.
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Common distributions

® Probability distributions at Wikipedia
® Probability distributions in R

° @ C. Forbes, M. Evans,
N. Hastings, B. Peacock (2010)
Statistical Distributions, 4th Edition

Wiley

min X, Negative a=f=1 Beta-binomial
binomial (n,a,B)
(n, p)

-1 Hypergeometric
P= %8 (M, K)

a+f—

_—"p=MIN,n=K

Relationships among common distributions. Solid lines represent transformations and special
cases, dashed lines represent limits. Adapted from Leemis (1986). 38/39
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The continuous Bayes' rule

BAYES’ RULE. Suppose the events C'q, Ca, ..., C,, are disjoint and
C1UCU---UC,, = Q. The conditional probability of C;, given an
arbitrary event A, can be expressed as:

P(A|Cy) - P(Cy)
P(A[C1)P(C1) + P(A| C2)P(Ca) + -+ P(A]| Co)P(Cr)

P(Ci|A) =

® Definition. Conditional density of X given Y = y with fy(y) > 0:
fXY(va)
f X = T
X|Y( ‘y) fY(y)

e Continuous Bayes' rule:

fery(xly) = Frix()ix(x)  Frix(rx) (%)
XYWyr = fr(y) T2 fyix ([t fx(t)dt
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