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Expectation of a discrete random variable

® Buy lottery ticket every week, p = 1/10000, what is probability of winning at k" week?
X ~ Geo(p) P(X=k)=(1—-p)kt-pfork=1,2,...
® What is the average number of weeks to wait (expected) before winning?
= 1
EX) =Y k(- p) =2
k=1 P

because Y2 k- x71 =1/a-xp

DEFINITION. The expectation of a discrete random variable X taking
the values aq,ao, ... and with probability mass function p is the

number
EX]=> aPX =a) =) aip(a:).

® Expected value, mean value (weighted by probability of occurrence), center of gravity

See seeing-theory.brown.edu
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https://seeing-theory.brown.edu/basic-probability/index.html

Expected value may be infinite or may not exist!

® Fair coin: win 2% euros if first H appears at k' toss [St. Petersburg paradox]
» X with p.m.f. p(2K) =27 for k = 1,2,...
» p()isapm.f. since Yo, 27k=1 using Yoo ak = 1L for |a| < 1

» Expected win (fair value to enter the game):

E[X]:i2k~2_k:i1:oo
k=1

k=1
® Expectation does not exist when ), a;jp(a;) does not converge
X with p.m.f. p(2K) = p(—2K) =27k for k =2,3,...
E[X] =Y 2,2k .27k —2k. 27Ky =5~ (1 —1) = 0 wrong!
E[X] =Y 2,2k 27k =572 2k. 27k = o0 — 00 undefined
E[X] is finite if Y |aj|p(a;) < o0
In the case above, > 72, (|2K| - 27% + | — 2K . 27%) = o0
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https://en.wikipedia.org/wiki/St._Petersburg_paradox

Expectation of some other discrete distributions

® Expectation of some other discrete distributions

>

v

v

v

\4

X~ U(m,M) E[X] = (m+M)/2

O N e = et oo (M) = m+ (M —m)/2 = M
X~ Ber(p) E[X]=p

00-(1—p)+1l-p=p [Expectation may not belong to the support]
X ~ Bin(n,p) E[X]=n-p

O Because ...we'll see later

X ~ NBin(n,p) E[X]={£

1-p
O Because ...we'll see later

X ~ Poi(u) EX]=n
O Because, when n — oo: Bin(n, #/n) — Poi(f)
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Expectation of a continuous random variable

DEFINITION. The ezpectation of a continuous random variable X
with probability density function f is the number

E[X] :/j:cxf(x)dx.

® Expectation of some continuous distributions
> X~ U(e,B)  EX]=(a+8)/2
» X ~ Exp(\)  E[X]=1x
O Because [ xhe™Mdx = [fefAX(X + 1/A)}go =0+ 1)
» X~ N(u,0?)  EIX] =

O Because: [* x—2—=e"2 dx—u—|—f " (x—p)

1x—py2
—-3(=5) —
o2m e 2w Vdx

\ﬁ X
= ,u—‘—affoooz\/%re_?}dz =pu

» X ~ Erl(n,A\) E[X]=r1/x
O Because ...we'll see later
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Expected value may not exists!

® Cauchy distribution (distribution of the ratio of two standard normals)

1
)=

> X1, Xo ~N(0,1) iid., X = X1 /X; ~ Cau(0,1)

E[X] = / i xF (x)dx + /O " (x)dx

— 00

> f dx—[lﬂlog(l—l—x2)]0_ = —c0

o

> [ xf(x dX:[§|Og(1+X2)]go:OO
E[X]=-c0+ 0

* E[X]is finite if [ [x|f(x)dx < o0
Mean value does not ailways make sense in your data analytics project!
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The change of variable formula (or rule of the lazy statistician)

® X ~ U(0,10), width of a square field, E[X] =5

® g(X) = X2 is the area of the field, E[g(X)] = ? [E[g(X)] # g(E[X])]

* Fo(a) =P(g(X) <a)=P(X < +/a) = Va/io for 0 < a <100

® Hence, f;(a) = dF:(3)/da = 1/20./2 [later on, a general theorem]
100 100

* ElgOOI= 55 )" o = 553 (7)) = o

° 1 .
A more direct way: THE CHANGE-OF-VARIABLE FORMULA. Let X be a random variable,

and let g : R — R be a function.
If X is discrete, taking the values a;,aq, ..., then

Elg(X)] =3 g(a)P(X =a;).
If X is continuous, with probability density function f, then

B0 = [ af@)f(@)d.

10 10
* Elg(X)] = [y x*dx = 153 [x°], =109/3
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Change of units

Theorem (Change of units)

E[rX +s] = rE[X] +s

® Example: for Y = 1.8X + 32, we have E[Y] = 1.8E[X] + 32 [Celsius to Fahrenheit]

Corollary.
’ E[X —E[X]] = E[X]-E[X]=0

Theorem. Expectation minimizes the square error, i.e., for a € R:

EI(X — E[X])] < E[(X — a)’]

> Proof. (sketch) set & [* (x — a)?f(x)dx =0
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Computation with discrete random variables

For a discrete random variable X, the p.m.f. of Y = g(X) is:

Pe(Y=y)= > Px(X=x)= ) Px(X=x)

g(x)=y xeg—(y)

> Proof. {Y =y} ={g(X)=y}={xeg(y)}
Corollary (the change-of-variable formula):

Elg(X)] =) yPy(Y =y) = Zy D Px(X=x) = g(x)Px(X =x)
y g(x)=y
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X ~ U(1,200) number of tickets sold
® Capacity is 150
® Y = max{X — 150,0} overbooked tickets

Py(y — y) = { 190/200 ify =0 g 1(0) = {1,...,150}
VIE=Y)I= 1200 if1<y <50 g (y)={y+ 150}

® Hence:

E[Y]=0- ﬁ+% Zy*6375

or using the change-of-variable formula:

200 200

1
. X —150,0} = — - X —150) = 6.375

1
E[Y] = 5
x=151

200
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Computation with continuous random variables

For a continuous random variable X, the density functions of Y = g(X)
when g() is increasing/decreasing are:

» Proof. (for g() increasing) Since g() is invertible and g(x) < y iff x < g71(y):
Fy(y) = Py(g(X) <y) = Px(X < g7'()) = Fx(g7'(¥))
and then:

dg—(y)
dy

_dFy(y) _ dFx(g”'(y)) _ dFx(g~*(y)) dg*(y)
dy dy dg! dy

fr(y) = fx(g7'(y))

Example in ML: Normalizing Flows (see Papamakarios et al., 2021)
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https://jmlr.org/papers/v22/19-1028.html

Change of units

CHANGE-OF-UNITS TRANSFORMATION. Let X be a continuous ran-
dom variable with distribution function Fy and probability density
function fx. If we change units to Y = rX + s for real numbers r > 0
and s, then

Fy(y) = Fx (y;s) and  fr(y) = 7ix (y"“).

T

For X ~ N(i1,02), how is Z = 1 X + = = X distributed?

* f7(z) =ofx(oy + p) = \/%e’%yz
® Hence, Z ~ N(0,1)

® In particular, for X ~ N'(u,0?), we have:

P(X <a)=P(z <2y — o224
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e X ~ U(0,1) radius  fx(x)=1 Fx(x)=x for x € [0,1]
e Y=g(X)=n-X? Support is [0, 7]

= mx? s | i “(y) = ') _ _1
® g(x) = mx* is increasing, and g~ '(y) = \/; and % yy o

Fy(y) = Fx(g7'(y)) = \E fr(y) = fx(g‘l(y))dg;ym = 2\/17T7

e Notice that: g(E[X]) = 7/s < E[g(X)] = fo x)dx =[5 yfy(y)dy = 3
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Jensen’s inequality

JENSEN’S INEQUALITY. Let g be a convex function, and let X be
a random variable. Then

9(E[X]) <E[g(X)].

o () is convex if f(tx; + (1 — t)x) < tf(x1) + (1 — t)f(x2) for t € [0, 1]

J(x)

tf (z1) + (1= t)f (x2)

Stz + (1 —t)xa)

oy + (1 - tyrs
e if f”(x) > 0 then f() is convex, e.g., g(x) = mx? or g(x) = /x for x > 0

Corollary [T, Ex. 8.11]. For a concave function g, namely g”’(x) < 0: g(E[X]) > E[g(X)]
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Variance

® |nvestment A. P(X =450)=0.5 P(X =550)=05 E[X] =500
* Investment B. P(X =0) = 0.5 P(X =1000) =05 E[X] = 500

Spread around the mean is important!

Variance and standard deviations

The variance Var(X) of a random variable X is the number:
Var(X) = E[(X — E[X])?]

ox =/ Var(X) is called the standard deviation of X.

The standard deviation has the same dimension as E[X] (and as X)
For X discrete, Var(X) = ",(a; — E[X])?p(a;)

Investment A. Var(X) =502 and ox = 50

Investment B. Var(X) = 5002 and ox = 500
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® ForacR:

E[|X — al] < VE[(X — a)?]

» Apply Jensen's ineq. for g(y) = y? convex on the r.v. Y = |X — 4

® Median minimizes absolute deviation, i.e., for any a € R:

E[|X — mx[] < E[|X — al]

» Prove it! (for continuous functions) Hint: < |x| = x/|x|

® Maximum distance between expectation and median:

|EIX] = mx| < E[|X — mx[] < E[|X — E[X]|] < VE[(X — E[X])?] = ox

» Jensen's ineq. for g(y) = |y| convex on the r.v. Y = X — mx plus the two results above
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® For discrete r.v. X with p.m..f. p(): the values a such that p(a) is maximum, i.e.:

arg max p(a)
a

» Can be more than one, e.g., in Ber(0.5)

® For continuous r.v. X with d.f. f(): the values x such that f(x) is a local maximum, e.g.:

f'(x)=0 and f"(x)<0

» Notice: local maximum!
mode

median

® Unimodal distribution = that have only one mode

rp
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Variance

Var(X) = E[X?] — E[X]?

» Proof.
Var(X) = E[(X = E[X])(X — E[X])]
= E[X?+ E[X]* — 2XE[X]]
= E[X? + E[X]? — E[2XE[X]]
= E[X?] + E[X]? - 2E[X]E[X] = E[X?] — E[X]?
® E[X?]is called the second moment of X for continuous r.v.’s: [70 x2f(x)dx
Corollary.
Var(rX + s) = r*Var(X)
Prove it!

® Variance insensitive to shift s!
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Variance may be infinite or may not exist!

Standard deviation ox is a measure of the margin of error around a predicted value
» E.g., temperature “20 + 1.5"
An infinite or non-existent margin of error is no prediction at all.

® Variance may not exists!

» If expectation does not exist!
» Also in cases when expectation exists: we'll see later Power laws.

® Variance can be infinite

» Distributions have fat upper tails that decrease at an extremely slow rate.
» The slow decay of probability increases the odds of very extreme values (outliers)
» E.g., eX for X ~ Cau(0,1) o8 T L — [log-Cauchy distribution]

LC(1, 1) —

LC0,2) ——
06 LC(0, .5) 1

LC(1,.5)
0.4 &»

RANN |

0 1 2 3 4 19/24




Variance

® Variance of some discrete distributions

>

vy

v

v

v

X~ U(m M) E[X] =M ypr(x) = WMomily—1

O use Var(X) = Var(X — m), call n=M —m+1and 377 2 = (c=n2n=l)

X ~Ber(p) E[X]=p Var(X)=p*(1-p)+(1-p)’p=p(l-p)
X ~ Bin(n,p) E[X]=n-p Var(X)=np(l-p
O Because ...we'll see later
X~ Geo(p) E[X]=1 Var(X)=21£
O Hint: use Var(X) = E[X?] — E[X]? and 32, k* - x* 1 = s
X ~ NBin(n,p) E[X]={£& Var(X) = ntL

—p i
O Because ...we'll see later

X~ Poi(p) EX]=p Var(X)=pu
O Because, when n — oo: Bin(n, #/n) — Poi(f)

See seeing-theory.brown.edu
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Variance

® Variance of some continuous distributions

» X~ U(a,B8)  EX]=(a+p)/2 Var(X)=(8-a)/12
O Prove it! Recall that f(x) = 1/(8-a)

» X~ Exp(\) E[X]=Yrx Var(X)=1Yx
O Prove it! Recall that f(x) = e ™

» X ~N(p,0?) E[X]=pn Var(X) =02
O Prove it! Hint: use z = *># and integration by parts.

» X ~ Erl(n,\) E[X]=1/x Var(X)=1/x

O Because ...we'll see later
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® Let X be a continuous random variable with density function f(x)
o kth moment of X, if it exists, is:

E[X¥] = /OO xKF(x)dx

® 1 = E[X] is the first moment of X
o kth central moment of X is:
= ELX =)' = [ (= " Fx)oi

o = /E[(X — u)?] standard deviation is the square root of the second central moment
kth standardized moment of X is:

=M _E {(Xﬂ)k]

- ok o
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® [iy = E[(X-m)l/o = 0 since E[X —pu] =0
® jip = El(X=1)?l/s? = 1 since 02 = E[(X — p)?]
® jiz = El[(X—p)*/o3 [(Pearson’s moment) coefficient of skewness]

® Skewness indicates direction and magnitude of a distribution’s deviation from symmetry

Mean
Median

Mode
|
Positive Symmetrical Negative
Skew Distribution Skew
e E.g., for X ~ Exp()), ji3 =2 Prove it!
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® iy = E[(%)“] [(Pearson’s moment) coefficient of kurtosis]
e For X ~ N(u,0), jia =3 fia — 3 is called kurtosis in excess
e Kurtosis is a measure of the dispersion of X around the two values u + o
(+) Leptokurtic General
Forms of
(0) Mesokurtic Kurtosis

(Hormal)

(-} Platykurtic

® jig > 3 Leptokurtic (slender) distribution has fatter tails. May have outlier problems.
® [ig < 3 Platykurtic (broad) distribution has thinner tails
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