Data Mining
Association Analysis: Basic Concepts
and Algorithms

Lecture Notes for Chapter 6

Introduction to Data Mining
by
Tan, Steinbach, Kumar

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

1

Association Rule Mining

e Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items in the transaction

Market-Basket transactions o
Example of Association Rules

TID Items

1 Bread, Milk Ell\D/Ili?lgeEr»}reZd{}Bie{r Eggs,Coke},

2 Bread, Diaper, Beer, Eggs {Beer, Bread} — {Milk]},

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer Implication means co-occurrence,
5 Bread, Milk, Diaper, Coke not causality!

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 2

Definition: Frequent Itemset

o ltemset
— A collection of one or more items
¢ Example: {Milk, Bread, Diaper}
— k-itemset
+ An itemset that contains k items
e Support count (o)
— Frequency of occurrence of an itemset
— E.g. o({Milk, Bread,Diaper}) = 2
e Support

— Fraction of transactions that contain an
itemset

— E.g. s({Milk, Bread, Diaper}) = 2/5
e Frequent Itemset

— An itemset whose support is greater
than or equal to a minsup threshold

TiD

Items

Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Nl =&l W N -

Bread, Milk, Diaper, Coke

© Tan,Steinbach, Kumar Introduction to Data Mining

4/18/2004 3

Definition: Association Rule

e Association Rule

TID Items
— An implication expression of the form .
. 1 Bread, Milk
X =Y, where X and Y are itemsets read,
2 Bread, Diaper, Beer, Eggs
— Example: P e
{Milk, Diaper} — {Beer} 3 Milk, Diaper, Beer, Coke
4. Bread, Milk, Diaper, Beer
]] 5 Bread, Milk, Diaper, Coke
e Rule Evaluation Metrics

— Support (s)
+ Fraction of transactions that contain Example:
both X and Y {Milk, Diaper } = Beer

— Confidence (c)

+ Measures how often items in Y = o (Milk, Diaper, Beer) _ 2 _04

appear in transactions that |'T | 5
contain X

. O'(Mllk,. Dlap.er,Beer) _ 2 0.67
o (Milk, Diaper) 3

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 4

Association Rule Mining Task

e Given a set of transactions T, the goal of
association rule mining is to find all rules having
— support = minsup threshold
— confidence = minconfthreshold

e Brute-force approach:
— List all possible association rules
— Compute the support and confidence for each rule

— Prune rules that fail the minsup and minconf
thresholds

= Computationally prohibitive!

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

5

Mining Association Rules

Example of Rules:

TID Items

Milk,Diaper} — {Beer 4, c=0.67)

1 Bread, Milk { } (s=0
2 Bread, Diaper, Beer, Eggs {Milk,Beer} — {Diaper} (s=0.4, c=1.0)
. . {Diaper,Beer} — {Milk} (s=0.4, c=0.67)
Milk, D B k
2 S C]‘; ° | {Beer} - {Milk Diaper} (s=0.4, c=0.67)
reac, VI Dlaper, P€er | (Diaper} — {Milk,Beer} (s=0.4, ¢=0.5)
5 | Bread, Milk, Diaper, Coke | r\jiik1 _ {Diaper,Beer} (s=0.4, c=0.5)

Observations:

« All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}

 Rules originating from the same itemset have identical support but
can have different confidence

» Thus, we may decouple the support and confidence requirements

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 6

Mining Association Rules

e [wo-step approach:

1. Frequent ltemset Generation
- Generate all itemsets whose support > minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset,
where each rule is a binary partitioning of a frequent itemset

e Frequent itemset generation is still
computationally expensive

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 7

Frequent Itemset Generation

Given d items, there
are 29 possible

candidate itemsets

8

Introduction to Data Mining 4/18/2004

(© Tan,Steinbach, Kumar

Frequent Itemset Generation

e Brute-force approach:
— Each itemset in the lattice is a candidate frequent itemset
— Count the support of each candidate by scanning the

database
Transactions List of
Candidates

TID |Items
1 Bread, Milk

f 2 Bread, Diaper, Beer, Eggs

N 3 Milk, Diaper, Beer, Coke
A Bread, Milk, Diaper, Beer

* 5 Bread, Milk, Diaper, Coke

- W >

— Match each transaction against every candidate
— Complexity ~ O(NMw) => Expensive since M = 29 |l

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 9

Computational Complexity

Number of rules

e Given d unique items:
— Total number of itemsets = 29
— Total number of possible association rules:

4

w10
5 _ —
d-1 d d—k d — k
3! R = X
k=1 k j=1]
4l
=3 2" 4]
3l
2r If d=6, R = 602 rules
1 |
3 4+ & & 7 8 8 10

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 10

Frequent Itemset Generation Strategies

e Reduce the number of candidates (M)
— Complete search: M=24
— Use pruning techniques to reduce M

e Reduce the number of transactions (N)
— Reduce size of N as the size of itemset increases
— Used by DHP and vertical-based mining algorithms

e Reduce the number of comparisons (NM)

— Use efficient data structures to store the candidates or
transactions

— No need to match every candidate against every
transaction

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 11

Reducing Number of Candidates

e Apriori principle:
— If an itemset is frequent, then all of its subsets must also
be frequent

e Apriori principle holds due to the following property
of the support measure:

VX, Y (X CcY)=s(X)=2s()

— Support of an itemset never exceeds the support of its
subsets

— This is known as the anti-monotone property of support

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 12

Illustrating Apriori Principle

(O]
=
20
Qo
52
=

13

4/18/2004

Introduction to Data Mining

(© Tan,Steinbach, Kumar

Illustrating Apriori Principle

ltem Count | Items (1-itemsets)
Bread 4
Milk 4 N ltemset Count | Pairs (2-itemsets)
Beer 3 {Bread,Milk} 3
|%2§h4- {Bread,Beer} 2 (No need to generate
{Bread,Diaper} 3 candidates involving Coke
{Milk,Beer} p or Eggs)
{Milk,Diaper} 3
{Beer,Diaper} 3
Minimum Support = 3
PP N Triplets (3-itemsets)
If every subset is considered, ltemset Count
6C1 +6C2+6C3=41 {Bread,Milk,Diaper} 3
With support-based pruning,
6+6+1=13

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 14

Apriori Algorithm

e Method:

— Let k=1
— Generate frequent itemsets of length 1

— Repeat until no new frequent itemsets are identified

¢ Generate length (k+1) candidate itemsets from length k
frequent itemsets

+ Prune candidate itemsets containing subsets of length k that
are infrequent

+ Count the support of each candidate by scanning the DB

+ Eliminate candidates that are infrequent, leaving only those
that are frequent

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 15

Reducing Number of Comparisons

e Candidate counting:

— Scan the database of transactions to determine the
support of each candidate itemset

— To reduce the number of comparisons, store the
candidates in a hash structure

+ Instead of matching each transaction against every candidate,
maitch it against candidates contained in the hashed buckets

Transactions Hash Structure

TID |Items A
Bread, Milk

Bread, Diaper, Beer, Eggs -

Milk, Diaper, Beer, Coke K
Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

Z
IS

\J

Buckets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 16

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

{145),{124),{457),{125)},{458), {1509}, {136)},{234)},{567),{345),
356},{357),{689},{367},{368)

You need:
 Hash function

» Max leaf size: max number of itemsets stored in a leaf nhode (if number of
candidate itemsets exceeds max leaf size, split the node)

Hash function g 2 ‘71
L@Z/T\Qfg 145 345 356 367
2,5,8 357 368
124 . 689
457 125 159
458

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 17

Association Rule Discovery: Hash tree

Hash Function

Candidate Hash Tree

1,4,7 3,6,9
2,5,8
145
Hash on
1,40r7
124
457

(© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

18

Association Rule Discovery: Hash tree

Hash Function

Candidate Hash Tree

1,4,7 3,6,9
2,5,8
145
Hash on
124
457

(© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

19

Association Rule Discovery: Hash tree

Hash Function Candidate Hash Tree

1,4,7 3,6.9
2,5,8
145
Hash on
3,60r9 a .
124 | [125 |1 |159] 689
457 | |a58 | T oo

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 20

Subset Operation

Given a transaction t, what

Transaction, t

are the possible subsets of

size 37? 12356

Level 1

135 235

125 156
196 136 236
Level 3 Subsets of 3 items

256

356

© Tan,Steinbach, Kumar Introduction to Data Mining

4/18/2004

21

Subset Operation Using Hash Tree

Hash Function

1 235 6 | transaction
L+2356 24356 1,4,7 3,6,9
2,58
124]|125]| L159 689
45711458
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 22

Subset Operation Using Hash Tree

Hash Function

1 2 35 6 | transaction
L +2556 2+356 1,4,7
12+]356
3+/56
234
15416 s 67
145 136
345 356 367
357 368
124]|125]| L159 639
457]1458

3,6,9

(© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

23

Subset Operation Using Hash Tree

1 2 35 6 | transaction
1+/2356 > 356
12+/356
3+/56
234
15+16 5j67
145 136
345 356 367
357 368
I
12401 125|159 639
45711458

Hash Function

3,6,9

Match transaction against 11 out of 15 candidates

(© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

24

Factors Affecting Complexity

e Choice of minimum support threshold
— lowering support threshold results in more frequent itemsets

— this may increase number of candidates and max length of
frequent itemsets

e Dimensionality (number of items) of the data set
— more space is needed to store support count of each item

— if number of frequent items also increases, both computation and
|/O costs may also increase

e Size of database

— since Apriori makes multiple passes, run time of algorithm may
increase with number of transactions

e Average transaction width
— transaction width increases with denser data sets

— This may increase max length of frequent itemsets and traversals
Of(ﬁ?h tree (number of subsets in a transaction increases with its
widt

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 25

Compact Representation of Frequent Itemsets

e Some itemsets are redundant because they have

identical support as their supersets

TID [A1] A2 A3[A4[A5[A6 | A7] A8 A9JA10] B1[B2[B3| B4 B5] B6] B7| B8 B9[B10] C1] C2] C3[C4] C5] C6] C7] C8] C9[C10

eNeoNolololNolNolNolNolNoll I it .

ecNeoNeololNoNeololNoloelNoll i i o Ss

eNeoNolololNolNolNolNolNoll I il .

[ecNeoNeoloNoNeololNoloelNoll i i o S

eNeoNolololNolNolNolNolNaoll I it .

ecNeoNeololNoNololNoloelNoll i i o s

eNeoNolololNolNolNolNolNoll I it .

ecNeoNeololNoNololNoloelNoll i s

eNeoNololNolNolNolNolNolNaoll I il .

ecNeoNeololNoNeololNoloelNoll i i o s

OO0 OO0 O™ rr™rm0O0OO0OOOO

OO0 0O ™" r"r@¥rrrm0000O0

OO0 OO ™Y r r™r@m0O0O0O0O0OO0OO

OO0 0O ™ r"¥r@¥rmrm0O0O0O0O0O0o

OO0 OO ™Y rr™rm0O0OO0O0OOOO

OO0 OO ™Y r~ ™ r™@rm0O0O0O0O0O0OO0OO0O

OO0 0O ™ r"@"Tr@¥rmrm00O0O0O0o

OO0 OO ™Y r ™ r™r@m0O0O0OO0OO0O

COO0OO0CO ™ r"@"Tr@rmrrm0000O0

OO0 OO ™Y r r™r™@m0O0OO0O0OOO0OO

T rrmrrmrr O 00000000 O0o

T rmrrrrrTO 00000000 O0o

T rrmrrmrr O 00000000 O0o

T rmrrrrTO 000000000 O0o

T rrmrrmrr O 00000000 O0o

T rmrrrrrT O 00000000 O0o

T rrmrrmrr O 00000000 O0o

T rmrrrrT O 000000000 O0o

T rrmrrmrr O 00000000 O0o

T rmrrrrmO OO0 O0O00O00O0O0O0O0o

~ ool |w]|o|~olo|2|Z YRR

iy REE ey e ey

(1?)

i
k=1

e Number of frequent itemsets = 3 X

e Need a compact representation

26

4/18/2004

Introduction to Data Mining

(© Tan,Steinbach, Kumar

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets
is frequent

Maximal
ltemsets

Infrequent
ltemsets <«

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 27

Closed Itemset

e An itemset is closed if none of its immediate supersets
has the same support as the itemset

TID ltems
1 {A,B}
2 {B,C,D}
3 {A,B,C,D}
4 {A,B,D}
5 {A,B,C,D}

ltemset

Support

{A}
{B}
{C}
{D}
{A,B}
{A,C}
{A,D}
{B,C}
{B,D}
{C,D}

4

WP, WOLWOWNPSEPALWLOLG

ltemset |Support
{A,B,C} 2
{A,B,D} 3
{A,C,D} 2
{B,C,D} 3
{A,B,C,D} 2

(© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

28

Transaction Ids

29

4/18/2004

Introduction to Data Mining

Maximal vs Closed Itemsets

Not supported by /,—*”/
any transactions ~~

ltems
C

ABCD
BCE

TID
1
2
3
4
S

(© Tan,Steinbach, Kumar

Maximal vs Closed Frequent Itemsets

©
&

(1]
S E
o3
O E

Closed =9
Maximal = 4

not maximal

Closed but

Minimum support = 2

30

4/18/2004

Introduction to Data Mining

(© Tan,Steinbach, Kumar

Maximal vs Closed Itemsets

Frequent
ltemsets

Closed
Frequent
ltemsets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

31

Alternative Methods for Frequent Itemset Generation

e Traversal of ltemset Lattice
— General-to-specific vs Specific-to-general

Frequent

itemset Frequent
border Null null itemset null
N ?% —_— %% border M ﬁ ~ 3\
/’ =~ /, RN
/ \ / \\
! \t \ ! 1. : ! | I / |
I | ') ' , I
booo o000 0000 0000 ool 000
\ \ \
T T
l /
/

Q Q Frequent Q

.......... itemset {a,a,..a}
border
(a) General-to-specific (b) Specific-to-general (c) Bidirectional

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 32

Alternative Methods for Frequent Itemset Generation

e [raversal of ltemset Lattice
— Equivalent Classes

(a) Prefix tree (b) Suffix tree

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 33

Alternative Methods for Frequent Itemset Generation

e [raversal of ltemset Lattice
— Breadth-first vs Depth-first

QQQQ\

_ QQOQQQ

NEEE Q Q @ Q Q P
58886600600 SN Y s
(a) Breadth first (b) Depth first

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 34

Alternative Methods for Frequent Itemset Generation

e Representation of Database
— horizontal vs vertical data layout

Horizontal
Data Layout Vertical Data Layout

B D E

ltems
A,B.E
B.,C,D
C.E
A,C,D
A,B,.C,D
AE
A,B
A,B,C
A,C,D
B

2 1
4 3
5 6
9

oI =
©O© oo~ wWNO

—
o

O©ooONO O~ 2>

- —]
SOP®N® O A WN =5

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 35

FP-growth Algorithm

e Use a compressed representation of the

database using an FP-tree

e Once an FP-tree has been constructed, it uses a

recursive divide-and-conquer approach to mine

the frequent itemsets

(© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

36

FP-tree construction

ltems

{A.B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B,C,E}

— —
S ©®N® UM WN =S

null
After reading TID=1: ?

After reading TID=2:

A:1()

ol

null

A1) QBl

31@/ Cl

QDl

(© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004 37

FP-Tree Construction

T:D I{f"é? Transaction
5 (B.C.D} Database
3 | {A,C,D,E}
4 | {AD,E}
5 | {AB,C}
6 | {AB,C,D}
7 ¢ | T
8 | {AB.(C}
9 | {AB,D} g
10 | {B,C,E} -
Header table '
C:3
ltem | Pointer | | P
A | T]
B | = -------e-efp---d /,’
C | -~ D:1
D | T Pointers are used to assist
E | - frequent itemset generation

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 38

FP-growth

null ()
AT Q/\Qle
\

c:1 (b1 C:1

O %Dl D:1

C:3

D:1

Conditional Pattern base

for D:

P ={(A:1,B:1,C:1),
(A:1,B:1),
(A:1,C:1),
(A:1),
(B:1,C:1)}

Recursively apply FP-
growthon P

Frequent ltemsets found
(with sup > 1):
AD, BD, CD, ACD, BCD

Introduction to Data Mining

(© Tan,Steinbach, Kumar

4/18/2004 39

Tree Projection

Set enumeration tree: (i

Possible Extension: — 0 ° G @ G

E(A) = {B,C,D,E}

() (o) () (&) (e0) (&) (e8) (o) (&) (oe)

(lec) (o) (ae6) (aco) (ac5) (wE) (o) (ece) (BoE) (cog)
e

Possible Extension:
E(ABC) = {D,E}

oo dece e e aome

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 40

Tree Projection

e ltems are listed in lexicographic order

e Each node P stores the following information:
— Itemset for node P
— List of possible lexicographic extensions of P: E(P)
— Pointer to projected database of its ancestor node

— Bitvector containing information about which
transactions in the projected database contain the
itemset

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 41

Projected Database

Original Database:

TID

ltems

Projected Database
for node A:

—h

© 00 NO 01~ W

10

1A,B)
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B,C,E}

ltems

—]
—h
OCOOO\ICDO'I-BOOI\)—LG

{B}

!
{C,D,E}
{D,E}
{B,C}
(B,C,D}

For each transaction T, projected transaction at node Ais T N E(A)

(© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

42

ECLAT

e For each item, store a list of transaction ids (tids)

Horizontal

Data Layout

ltems

Vertical Data Layout

— —
SOONDURWLN =5

AB.E
B,C.D
C,E
A,C,D
A,B,C,D
AE

A,B
A,B,C
A,C,D

B

A | B|]C| D E
1 1 2 2 1
4 2 3 4 3
3 3) 4 3) 6
6 / 8 9
7 8 9
8 | 10
9
l
TID-list

(© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

43

ECLAT

e Determine support of any k-itemset by intersecting tid-lists
of two of its (k-1) subsets.

A B AB
1 1 1

4 2 5

5 /A\ 5 % 7
6 / 8
7 8

8 10

9

e 3 traversal approaches:
— top-down, bottom-up and hybrid
e Advantage: very fast support counting

e Disadvantage: intermediate tid-lists may become too
large for memory

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 44

Rule Generation

e Given a frequent itemset L, find all non-empty
subsets f — L such that f —» L — f satisfies the
minimum confidence requirement

— If {A,B,C,D} is a frequent itemset, candidate rules:

ABC —D, ABD —C, ACD —B, BCD —A,
A —»BCD, B —-ACD, C —ABD, D -ABC
AB —CD, AC — BD, AD — BC, BC —AD,
BD —»AC, CD —AB,

e If |L| = k, then there are 2% — 2 candidate
association rules (ignoring L - Y and & — L)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 45

Rule Generation

e How to efficiently generate rules from frequent
itemsets?

— In general, confidence does not have an anti-
monotone property

c(ABC —D) can be larger or smaller than ¢(AB —D)

— But confidence of rules generated from the same
itemset has an anti-monotone property

— e.g.,L={AB,C,D}:
¢(ABC — D) > ¢(AB — CD) > ¢(A — BCD)

¢ Confidence is anti-monotone w.r.t. number of items on the
RHS of the rule

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

46

Rule Generation for Apriori Algorithm

Lattice of rules

Low
Confide&*
Rule /

N
Pruned ~ _ _ -
Rules N —— = -

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 47

Rule Generation for Apriori Algorithm

e Candidate rule is generated by merging two rules
that share the same prefix
In the rule consequent

e join(CD=>AB,BD=>AC)
would produce the candidate
rule D => ABC

e Prune rule D=>ABC if its
subset AD=>BC does not have
high confidence

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 48

Pisa KDD Laboratory
htto.//www-kdd.isti.cnr.it

+
Constraint-based Mining

Francesco Bonchi

e-mail: francesco.bonchi@isti.cnr.it

homepage: http.//www-kdd.isti.cnr.it/~bonchi/

!

L TRuNTe
[e
6

Naji
”"J:_.-;-_'-"E}Tq-u Ll

O -

Is Apriori Fast Enough — Any Performance
Bottlenecks?

= The core of the Apriori algorithm:

» Use frequent (k — 1)-itemsets to generate candidate frequent
k-itemsets

» Use database scan and pattern matching to collect counts
for the candidate itemsets

» The bottleneck of Apriori: candidate generation

» Huge candidate sets:
= 10 frequent 1-itemset will generate 107 candidate 2-itemsets

= To discover a frequent pattern of size 100, e.g., {a,, @, ..., 8,yo}, ONE
needs to generate 2790 =~ 1030 candidates.

= Multiple scans of database:
» Needs (n +1) scans, n is the length of the longest pattern

50

Mining Frequent Patterns
Without Candidate Generation

» Compress a large database into a compact,
Frequent-Pattern tree (FP-tree) structure
= highly condensed, but complete for frequent pattern
mining
» avoid costly database scans

» Develop an efficient, FP-tree-based frequent
pattern mining method

» A divide-and-conquer methodology: decompose
mining tasks into smaller ones

» Avoid candidate generation: sub-database test only!

51

How to Construct FP-tree from a Transactional
Database?

TID Items bought

(ordered) frequent items

100 {facdgim,p}
200 {a, b, c, [, I, m, 0}
300 {b,f hJj, o}

400 {b, ¢, k, s, p}

500 la,f,¢c, e, 1, p,m n}

Steps:

1. Scan DB once, find frequent
1-itemset (single item
pattern)

2. Order frequent items in
frequency descending order

3. Scan DB again, construct
FP-tree

{f,c,a,m,p}
{f; C) a) b) m}
{f, b}

{c, b, p}

{f, ¢, a, m, p}

min_support =3

Header Table

Item frequency

4

/
c
a
b
m
p

W W W KN

52

Benefits of the FP-tree Structure

= Completeness:

never breaks a long pattern of any transaction

» preserves complete information for frequent pattern

mining

= Compactness

reduce irrelevant information—infrequent items are gone

frequency descending ordering: more frequent items are
more likely to be shared

never be larger than the original database (if not count
node-links and counts)

53

Mining Frequent Patterns Using FP-tree

= (General idea (divide-and-conquer)

» Recursively grow frequent pattern path using the FP-
ree

= Method
» for each item, construct its conditional pattern-base,
and then its conditional FP-tree

» Repeat the process on each newly created conditional
FP-tree

= Until the resulting FP-tree is empty, or it contains only

one path (single path will generate all the combinations of its
sub-paths, each of which is a frequent pattern)

54

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the
FP-tree

2) Construct conditional FP-tree from each conditional
pattern-base

3) Recursively mine conditional FP-trees and grow
frequent patterns obtained so far

4) If the conditional FP-tree contains a single path, simply
enumerate all the patterns

55

Step 1: From FP-tree to Conditional Pattern Base

= Starting at the frequent header table in the FP-tree

» Traverse the FP-tree by following the link of each frequent item

» Accumulate all of transformed prefix paths of that item to form a
conditional pattern base

Header Table

Item frequency head

J
c
a
b
m
p

w w ww

A KA
|
|

Conditional pattern bases

item

cond. pattern base

’Es@am

f:3

fe:3

fea:l, f:1, c:1
feca:2, fcab:1

feam:2, cb:1

56

Properties of FP-tree for Conditional Pattern
Base Construction

= Node-link property
= For any frequent item a, all the possible frequent
patterns that contain a; can be obtained by following a;'s
node-links, starting from a;'s head in the FP-tree header

» Prefix path property
= Jo calculate the frequent patterns for a node a; in a path
P, only the prefix sub-path of a;in P need to be
accumulated, and its frequency count should carry the

same count as node a..

57

Step 2: Construct Conditional FP-tree

» for each pattern-base
» Accumulate the count for each item in the base
» Construct the FP-tree for the frequent items of the pattern

base
{}\ m-conditional pattern
Header Table base:
Item frequency head 3 | e fea:2, feab:1
f 4 17 //\, \ All frequent patterns
c 4 —1=> 31 b3l b1 {} concerning m
] A 1
a 3 \\\ g ! | L 9 | m)
b 3 o \\\>\ a:3 | [21.'] f:3 -> fm, cm, am,
m 3 . \\\ ~Ns) | fem, fam, cam,
p 3 \\ T ml 2 \L b,} 1 /// C|3 feam
RN <
p:2 T m:l a3

m-conditional FP-tree 58

Mining Frequent Patterns by Creating Conditional
Pattern Bases

Item | Conditional pattern-base | Conditional FP-tree
P {(fcam:2), (cb:1)} {(c:3)}Ip
m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}{m
b {(fca:1), (f:1), (c:1)} Empty
a {(fc:3)} {(f:3, c:3)}a
c {(f:3)} {(f:3)}c
f Empty Empty

59

Step 3: recursively mine the conditional FP-tree

{}
|
{ Cond. pattern base of “am”: (fc:3) f:3
| |
-3
f:3)
| am-conditional FP-tree
c:3 {}
| Cond. pattern base of “cm”: (f:3) |
a:3 f-'3

m-conditional FP-tree
cm-conditional FP-tree

{}
|
Cond. pattern base of “cam”: (f:3) f:3

cam-conditional FP-tree

60

Single FP-tree Path Generation

» Suppose an FP-tree T has a single path P

= The complete set of frequent pattern of T can be
generated by enumeration of all the combinations of the

sub-paths of P

U
|

J:3

|
c:3 4

I
a:3

m-conditional FP-tree

All frequent patterns
concerning m

m,

fm, cm, am,
fem, fam, cam,
fcam

61

Principles of Frequent Pattern Growth

= Pattern growth property

» [et a be a frequent itemset in DB, B be a's
conditional pattern base, and S be an itemset in B.
Then o U B is a frequent itemset in DB iff 5 is
frequent in B.

» “abcdef ”is a frequent pattern, if and only if
= “abcde " is a frequent pattern, and

= “f7is frequent in the set of transactions containing
“abcde ”

62

