
Data Mining
Association Analysis: Basic Concepts

and Algorithms

Lecture Notes for Chapter 6

Introduction to Data Mining

by

Tan, Steinbach, Kumar

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 2

Association Rule Mining

� Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items in the transaction

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper} → {Beer},

{Milk, Bread} → {Eggs,Coke},

{Beer, Bread} → {Milk},

Implication means co-occurrence,
not causality!

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 3

Definition: Frequent Itemset

� Itemset

– A collection of one or more items

� Example: {Milk, Bread, Diaper}

– k-itemset

� An itemset that contains k items

� Support count (σσσσ)

– Frequency of occurrence of an itemset

– E.g. σ({Milk, Bread,Diaper}) = 2

� Support

– Fraction of transactions that contain an
itemset

– E.g. s({Milk, Bread, Diaper}) = 2/5

� Frequent Itemset

– An itemset whose support is greater
than or equal to a minsup threshold

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 4

Definition: Association Rule

Example:

Beer}Diaper,Milk{ ⇒

4.0
5

2

|T|

)BeerDiaper,,Milk(
===

σ
s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(
===

σ

σ
c

� Association Rule

– An implication expression of the form

X → Y, where X and Y are itemsets

– Example:

{Milk, Diaper} → {Beer}

� Rule Evaluation Metrics

– Support (s)

� Fraction of transactions that contain

both X and Y

– Confidence (c)

� Measures how often items in Y

appear in transactions that

contain X

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 5

Association Rule Mining Task

� Given a set of transactions T, the goal of

association rule mining is to find all rules having

– support ≥ minsup threshold

– confidence ≥ minconf threshold

� Brute-force approach:

– List all possible association rules

– Compute the support and confidence for each rule

– Prune rules that fail the minsup and minconf
thresholds

⇒ Computationally prohibitive!

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 6

Mining Association Rules

Example of Rules:

{Milk,Diaper} → {Beer} (s=0.4, c=0.67)
{Milk,Beer} → {Diaper} (s=0.4, c=1.0)
{Diaper,Beer} → {Milk} (s=0.4, c=0.67)
{Beer} → {Milk,Diaper} (s=0.4, c=0.67)
{Diaper} → {Milk,Beer} (s=0.4, c=0.5)
{Milk} → {Diaper,Beer} (s=0.4, c=0.5)

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Observations:

• All the above rules are binary partitions of the same itemset:
{Milk, Diaper, Beer}

• Rules originating from the same itemset have identical support but
can have different confidence

• Thus, we may decouple the support and confidence requirements

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 7

Mining Association Rules

� Two-step approach:

1. Frequent Itemset Generation

– Generate all itemsets whose support ≥ minsup

2. Rule Generation

– Generate high confidence rules from each frequent itemset,
where each rule is a binary partitioning of a frequent itemset

� Frequent itemset generation is still

computationally expensive

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 8

Frequent Itemset Generation

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there
are 2d possible
candidate itemsets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 9

Frequent Itemset Generation

� Brute-force approach:

– Each itemset in the lattice is a candidate frequent itemset

– Count the support of each candidate by scanning the
database

– Match each transaction against every candidate

– Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Transactions

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 10

Computational Complexity

� Given d unique items:
– Total number of itemsets = 2d

– Total number of possible association rules:

123 1

1

1 1

+−=
















 −
×







=

+

−

=

−

=

∑ ∑

dd

d

k

kd

j j

kd

k

d
R

If d=6, R = 602 rules

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 11

Frequent Itemset Generation Strategies

� Reduce the number of candidates (M)
– Complete search: M=2d

– Use pruning techniques to reduce M

� Reduce the number of transactions (N)
– Reduce size of N as the size of itemset increases

– Used by DHP and vertical-based mining algorithms

� Reduce the number of comparisons (NM)
– Use efficient data structures to store the candidates or

transactions

– No need to match every candidate against every
transaction

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 12

Reducing Number of Candidates

� Apriori principle:

– If an itemset is frequent, then all of its subsets must also
be frequent

� Apriori principle holds due to the following property

of the support measure:

– Support of an itemset never exceeds the support of its
subsets

– This is known as the anti-monotone property of support

)()()(:, YsXsYXYX ≥⇒⊆∀

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 13

Found to be
Infrequent

Illustrating Apriori Principle

Pruned
supersets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 14

Illustrating Apriori Principle

Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

I te m s e t C o u n t

{B re a d ,M ilk ,D ia p e r} 3

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered,
6C1 +

6C2 +
6C3 = 41

With support-based pruning,
6 + 6 + 1 = 13

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 15

Apriori Algorithm

� Method:

– Let k=1

– Generate frequent itemsets of length 1

– Repeat until no new frequent itemsets are identified

� Generate length (k+1) candidate itemsets from length k
frequent itemsets

� Prune candidate itemsets containing subsets of length k that
are infrequent

� Count the support of each candidate by scanning the DB

� Eliminate candidates that are infrequent, leaving only those
that are frequent

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 16

Reducing Number of Comparisons

� Candidate counting:
– Scan the database of transactions to determine the

support of each candidate itemset

– To reduce the number of comparisons, store the
candidates in a hash structure

� Instead of matching each transaction against every candidate,
match it against candidates contained in the hashed buckets

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Transactions

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 17

Generate Hash Tree

2 3 4

5 6 7

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

3 4 5 3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},

{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

• Hash function

• Max leaf size: max number of itemsets stored in a leaf node (if number of

candidate itemsets exceeds max leaf size, split the node)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 18

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
1, 4 or 7

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 19

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
2, 5 or 8

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 20

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function Candidate Hash Tree

Hash on
3, 6 or 9

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 21

Subset Operation

Given a transaction t, what

are the possible subsets of

size 3?

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 22

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6
3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 23

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 24

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 candidates

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 25

Factors Affecting Complexity

� Choice of minimum support threshold
– lowering support threshold results in more frequent itemsets

– this may increase number of candidates and max length of
frequent itemsets

� Dimensionality (number of items) of the data set
– more space is needed to store support count of each item

– if number of frequent items also increases, both computation and
I/O costs may also increase

� Size of database
– since Apriori makes multiple passes, run time of algorithm may

increase with number of transactions

� Average transaction width
– transaction width increases with denser data sets

– This may increase max length of frequent itemsets and traversals
of hash tree (number of subsets in a transaction increases with its
width)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 26

Compact Representation of Frequent Itemsets

� Some itemsets are redundant because they have
identical support as their supersets

� Number of frequent itemsets

� Need a compact representation

TID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1 0

2 1 1 1 1 1 1 1 1 1 1 0

3 1 1 1 1 1 1 1 1 1 1 0

4 1 1 1 1 1 1 1 1 1 1 0

5 1 1 1 1 1 1 1 1 1 1 0

6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

11 0 1 1 1 1 1 1 1 1 1 1

12 0 1 1 1 1 1 1 1 1 1 1

13 0 1 1 1 1 1 1 1 1 1 1

14 0 1 1 1 1 1 1 1 1 1 1

15 0 1 1 1 1 1 1 1 1 1 1

∑
=









×=

10

1

10
3

k k

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 27

Maximal Frequent Itemset

Border

Infrequent
Itemsets

Maximal
Itemsets

An itemset is maximal frequent if none of its immediate supersets
is frequent

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 28

Closed Itemset

� An itemset is closed if none of its immediate supersets
has the same support as the itemset

TID Items

1 {A,B}

2 {B,C,D}

3 {A,B,C,D}

4 {A,B,D}

5 {A,B,C,D}

Itemset Support

{A} 4

{B} 5

{C} 3

{D} 4

{A,B} 4

{A,C} 2

{A,D} 3

{B,C} 3

{B,D} 4

{C,D} 3

Itemset Support

{A,B,C} 2

{A,B,D} 3

{A,C,D} 2

{B,C,D} 3

{A,B,C,D} 2

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 29

Maximal vs Closed Itemsets

TID Items

1 ABC

2 ABCD

3 BCE

4 ACDE

5 DE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Transaction Ids

Not supported by
any transactions

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 30

Maximal vs Closed Frequent Itemsets

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

124 123 1234 245 345

12 124 24 4 123 2 3 24 34 45

12 2 24 4 4 2 3 4

2 4

Minimum support = 2

Closed = 9

Maximal = 4

Closed and
maximal

Closed but
not maximal

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 31

Maximal vs Closed Itemsets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 32

Alternative Methods for Frequent Itemset Generation

� Traversal of Itemset Lattice

– General-to-specific vs Specific-to-general

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 33

Alternative Methods for Frequent Itemset Generation

� Traversal of Itemset Lattice

– Equivalent Classes

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 34

Alternative Methods for Frequent Itemset Generation

� Traversal of Itemset Lattice

– Breadth-first vs Depth-first

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 35

Alternative Methods for Frequent Itemset Generation

� Representation of Database

– horizontal vs vertical data layout

TID Items

1 A,B,E

2 B,C,D

3 C,E

4 A,C,D

5 A,B,C,D

6 A,E

7 A,B

8 A,B,C

9 A,C,D

10 B

A B C D E

1 1 2 2 1

4 2 3 4 3

5 5 4 5 6

6 7 8 9

7 8 9

8 10

9

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 36

FP-growth Algorithm

� Use a compressed representation of the

database using an FP-tree

� Once an FP-tree has been constructed, it uses a

recursive divide-and-conquer approach to mine

the frequent itemsets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 37

FP-tree construction

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:1

B:1

null

A:1

B:1

B:1

C:1

D:1

After reading TID=1:

After reading TID=2:

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 38

FP-Tree Construction

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

Pointers are used to assist
frequent itemset generation

D:1

E:1

Transaction

Database

Item Pointer

A

B

C

D

E

Header table

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 39

FP-growth

null

A:7

B:5

B:1

C:1

D:1

C:1

D:1
C:3

D:1

D:1

Conditional Pattern base
for D:

P = {(A:1,B:1,C:1),
(A:1,B:1),
(A:1,C:1),
(A:1),
(B:1,C:1)}

Recursively apply FP-
growth on P

Frequent Itemsets found
(with sup > 1):

AD, BD, CD, ACD, BCD

D:1

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 40

Tree Projection

Set enumeration tree:
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Possible Extension:

E(A) = {B,C,D,E}

Possible Extension:

E(ABC) = {D,E}

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 41

Tree Projection

� Items are listed in lexicographic order

� Each node P stores the following information:

– Itemset for node P

– List of possible lexicographic extensions of P: E(P)

– Pointer to projected database of its ancestor node

– Bitvector containing information about which
transactions in the projected database contain the
itemset

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 42

Projected Database

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

TID Items

1 {B}

2 {}

3 {C,D,E}

4 {D,E}

5 {B,C}

6 {B,C,D}

7 {}

8 {B,C}

9 {B,D}

10 {}

Original Database:
Projected Database
for node A:

For each transaction T, projected transaction at node A is T ∩∩∩∩ E(A)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 43

ECLAT

� For each item, store a list of transaction ids (tids)

TID Items

1 A,B,E

2 B,C,D

3 C,E

4 A,C,D

5 A,B,C,D

6 A,E

7 A,B

8 A,B,C

9 A,C,D

10 B

Horizontal

Data Layout

A B C D E

1 1 2 2 1

4 2 3 4 3

5 5 4 5 6

6 7 8 9

7 8 9

8 10

9

Vertical Data Layout

TID-list

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 44

ECLAT

� Determine support of any k-itemset by intersecting tid-lists
of two of its (k-1) subsets.

� 3 traversal approaches:

– top-down, bottom-up and hybrid

� Advantage: very fast support counting

� Disadvantage: intermediate tid-lists may become too
large for memory

A

1

4

5

6

7

8

9

B

1

2

5

7

8

10

∧∧∧∧ →→→→

AB

1

5

7

8

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 45

Rule Generation

� Given a frequent itemset L, find all non-empty

subsets f ⊂ L such that f → L – f satisfies the
minimum confidence requirement

– If {A,B,C,D} is a frequent itemset, candidate rules:

ABC →D, ABD →C, ACD →B, BCD →A,
A →BCD, B →ACD, C →ABD, D →ABC
AB →CD, AC → BD, AD → BC, BC →AD,
BD →AC, CD →AB,

� If |L| = k, then there are 2k – 2 candidate

association rules (ignoring L → ∅ and ∅ → L)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 46

Rule Generation

� How to efficiently generate rules from frequent
itemsets?
– In general, confidence does not have an anti-

monotone property

c(ABC →D) can be larger or smaller than c(AB →D)

– But confidence of rules generated from the same
itemset has an anti-monotone property

– e.g., L = {A,B,C,D}:

c(ABC → D) ≥ c(AB → CD) ≥ c(A → BCD)

� Confidence is anti-monotone w.r.t. number of items on the
RHS of the rule

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 47

Rule Generation for Apriori Algorithm

Lattice of rules

Pruned

Rules

Low

Confidence

Rule

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 48

Rule Generation for Apriori Algorithm

� Candidate rule is generated by merging two rules

that share the same prefix

in the rule consequent

� join(CD=>AB,BD=>AC)

would produce the candidate

rule D => ABC

� Prune rule D=>ABC if its

subset AD=>BC does not have

high confidence

BD=>ACCD=>AB

D=>ABC

49

FP-growth Mining of Frequent Itemsets
+

Constraint-based Mining

Francesco Bonchi

e-mail: francesco.bonchi@isti.cnr.it

homepage: http://www-kdd.isti.cnr.it/~bonchi/

Pisa KDD Laboratory
http://www-kdd.isti.cnr.it

50

Is Apriori Fast Enough — Any Performance
Bottlenecks?

� The core of the Apriori algorithm:

� Use frequent (k – 1)-itemsets to generate candidate frequent

k-itemsets

� Use database scan and pattern matching to collect counts

for the candidate itemsets

� The bottleneck of Apriori: candidate generation

� Huge candidate sets:

� 104 frequent 1-itemset will generate 107 candidate 2-itemsets

� To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100}, one

needs to generate 2100 ≈ 1030 candidates.

� Multiple scans of database:

� Needs (n +1) scans, n is the length of the longest pattern

51

Mining Frequent Patterns
Without Candidate Generation

� Compress a large database into a compact,

Frequent-Pattern tree (FP-tree) structure

� highly condensed, but complete for frequent pattern

mining

� avoid costly database scans

� Develop an efficient, FP-tree-based frequent

pattern mining method

� A divide-and-conquer methodology: decompose
mining tasks into smaller ones

� Avoid candidate generation: sub-database test only!

52

How to Construct FP-tree from a Transactional
Database?

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

Steps:

1. Scan DB once, find frequent
1-itemset (single item
pattern)

2. Order frequent items in
frequency descending order

3. Scan DB again, construct
FP-tree

53

Benefits of the FP-tree Structure

� Completeness:

� never breaks a long pattern of any transaction

� preserves complete information for frequent pattern
mining

� Compactness

� reduce irrelevant information—infrequent items are gone

� frequency descending ordering: more frequent items are

more likely to be shared

� never be larger than the original database (if not count

node-links and counts)

54

Mining Frequent Patterns Using FP-tree

� General idea (divide-and-conquer)

� Recursively grow frequent pattern path using the FP-

tree

� Method

� For each item, construct its conditional pattern-base,
and then its conditional FP-tree

� Repeat the process on each newly created conditional

FP-tree

� Until the resulting FP-tree is empty, or it contains only

one path (single path will generate all the combinations of its

sub-paths, each of which is a frequent pattern)

55

Major Steps to Mine FP-tree

1) Construct conditional pattern base for each node in the

FP-tree

2) Construct conditional FP-tree from each conditional

pattern-base

3) Recursively mine conditional FP-trees and grow

frequent patterns obtained so far

4) If the conditional FP-tree contains a single path, simply

enumerate all the patterns

56

Step 1: From FP-tree to Conditional Pattern Base

� Starting at the frequent header table in the FP-tree

� Traverse the FP-tree by following the link of each frequent item

� Accumulate all of transformed prefix paths of that item to form a
conditional pattern base

Conditional pattern bases

item cond. pattern base

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

57

Properties of FP-tree for Conditional Pattern
Base Construction

� Node-link property

� For any frequent item ai, all the possible frequent

patterns that contain ai can be obtained by following ai's

node-links, starting from ai's head in the FP-tree header

� Prefix path property

� To calculate the frequent patterns for a node ai in a path

P, only the prefix sub-path of ai in P need to be

accumulated, and its frequency count should carry the

same count as node ai.

58

Step 2: Construct Conditional FP-tree

� For each pattern-base

� Accumulate the count for each item in the base

� Construct the FP-tree for the frequent items of the pattern
base

m-conditional pattern

base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent patterns
concerning m

m,

fm, cm, am,

fcm, fam, cam,

fcam

����
����

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item frequency head
f 4

c 4
a 3
b 3
m 3
p 3

59

Mining Frequent Patterns by Creating Conditional
Pattern Bases

EmptyEmptyf

{(f:3)}|c{(f:3)}c

{(f:3, c:3)}|a{(fc:3)}a

Empty{(fca:1), (f:1), (c:1)}b

{(f:3, c:3, a:3)}|m{(fca:2), (fcab:1)}m

{(c:3)}|p{(fcam:2), (cb:1)}p

Conditional FP-treeConditional pattern-baseItem

60

Step 3: recursively mine the conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3

am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)

{}

f:3

cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3

cam-conditional FP-tree

61

Single FP-tree Path Generation

� Suppose an FP-tree T has a single path P

� The complete set of frequent pattern of T can be

generated by enumeration of all the combinations of the

sub-paths of P

{}

f:3

c:3

a:3

m-conditional FP-tree

All frequent patterns
concerning m

m,

fm, cm, am,

fcm, fam, cam,

fcam

����

62

Principles of Frequent Pattern Growth

� Pattern growth property

� Let α be a frequent itemset in DB, B be α's

conditional pattern base, and β be an itemset in B.

Then α ∪ β is a frequent itemset in DB iff β is

frequent in B.

� “abcdef ” is a frequent pattern, if and only if

� “abcde ” is a frequent pattern, and

� “f ” is frequent in the set of transactions containing

“abcde ”

