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*Natural” Networks and Universality

= Consider many kinds of networks:
= social, technological, business, economic, content,...
= These networks tend to share certain /nformal properties:
= large scale; continual growth
distributed, organic growth: vertices “decide” who to link to
interaction restricted to links
mixture of local and long-distance connections
abstract notions of distance: geographical, content, social,...
= Do natural networks share more guantitative universals?
= What would these “universals” be?
= How can we make them precise and measure them?
= How can we explain their universality?
= This is the domain of social network theory
= Sometimes also referred to as /ink analysis
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Some Interesting Quantities

s Connected components:
= how many, and how large?
s Network diameter:
= maximum (worst-case) or average?
= exclude infinite distances? (disconnected components)
= the small-world phenomenon
s Clustering:
= to what extent that links tend to cluster “locally”?
= Wwhat is the balance between local and long-distance connections?
= what roles do the two types of links play?
s Degree distribution:
= Wwhat is the typical degree in the network?
= Wwhat is the overall distribution?
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The small-world effect

Consider an undirected network, and let us define ¢
to be the mean geodesic (i.e., shortest) distance between
vertex pairs in a network:

1
=n(n+1) Z i (1)

2 iz]

where d;; 1s the geodesic distance from vertex i to ver-
tex 7.
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Transitivity — the clustering coefficient

In the language of social networks, the friend of vour
friend 1s likely also to be your friend. In terms of network
topology, transitivity means the presence of a heightened
number of triangles in the network—sets of three vertices
each of which 1s connected to each of the others. It can
be quantified by defining a clustering coefficient €' thus:

C— 3> number of triangles in the network (3)
- number of connected triples of vertices’

where a “connected triple” means a single vertex with
edges running to an unordered pair of others (see Fig. 5).

December 9, 2008 Data Mining: Concepts and Techniques 5



Transitivity — the clustering coefficient

e i‘n

FIG. 5 Illustration of the definition of the clustering coeffi-
cient C', Eq. (3). This network has one triangle and eight

connected triples, and therefore has a clustering coefficient of

3 x 1/8 = 2. The individual vertices have local clustering

coefficients, Eq. (5), of 1, 1, %, 0 and 0, for a mean value,

Eq. (6), of C' = ;—g.

c 6% number of triangles in the network

(4)

number of paths of length two
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Transitivity — the clustering coefficient

An alternative definition of the clustering coefficient,
also widely used, has been given by Watts and Stro-
catz 416], who proposed defining a local value

o number of triangles connected to vertex i
.-"E.. prm—

(5)

number of triples centered on vertex i

For vertices with degree 0 or 1, for which both numerator
and denominator are zero, we put ; = 0. Then the
clustering coefficient for the whole network 1s the average

1_1 T
c_ng:c?. (6)
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Degree distribution

= The degree of a vertex in a network is the
number of edges incident on (i.e., connected to)
that vertex.

= p, = the fraction of vertices in the network that
have degree K.

= Equivalently, p, = the probability that a vertex
chosen uniformly at random has degree K.

= A plot of p, for any given network can be formed
by a histogram of the degrees of vertices.

= This histogram is the degree distribution for
the network
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Degree distributions for six networks
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Actor Connectivity (power law)
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Science Citation Index (power law)
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Sex-Web (power law)

Nodes: people (Females; Males)
Links: sexual relationships
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Basic statisics for some publlshed networks

network tvpe 1 1 z a | O c@ r
film actors undirected 449913 25 516 482 113.43 3.48 2.3 0.20 0.78 0. 208
company directors undirected TET3 55302 14.44 4.60 — | 0.59 0.88 0.276
math coauthorship undirected 253330 406 480 3.92 T.AT — | 0.15 .34 0.120
physics coauthorship | undirected 52000 245 300 9.27 .10 — | 0.45 0.56 0.363
= | biclogy coauthorship | undirected 1520251 11 803 064 15.53 4.92 — | 0.088 | 0.60 0.127
§ telephone call graph undirected AT D00 000 S0 000 000 3.16 2.
email messages directed 50012 86 300 1.44 4.95 1.5/2 0.16
email address books directed 16 &81 BT 0249 3.38 5.22 - 0,17 0.13 0,092
student relationships | undirected 57 ATT 1.66 | 16.01 0,005 | 0,001 —0.029
sexual contacts undirected 2810 3.2
. WWW nd.edu directed 269 504 1497135 .55 11.27 2.1/2.4 0.11 0.29 —0.067
-% WWW Altavista directed 203 549 046 2 130 000 000 10,46 16.18 2.1/2.7
g citation network directed 783330 6716198 857 3.0/
‘é Roget's Thesaurus directed 1022 5103 4.99 4.87 — | 013 0.15 0.157
" | word co-occurrence undirected 460902 17 000 000 70.13 2.7 0.44
Internet undirceted 10607 310032 5.08 3.21 2.5 0,035 0.30 0,180
= | power grid undirected 4941 6504 2.67 18.99 — | 0.10 0,080 —0.003
E.EI train routes undirected 587 19603 f6.79 2.16 - 0.69 —0.033
_g' software packages directed 1439 1723 1.20 2.42 1.6/1.4 | 0,070 | 0.082 —0.016
£ software classes directed 1377 2213 1.61 1.51 - 0.033 0.012 —0.119
S electronic circuits undirected 24007 53248 4.34 11.05 3.0 | 0,010 | 0.030 —0.154
peer-to-peer network | undirected 880 1296 1.47 4.28 2.1 0012 | 0,011 — 0. 366
metabolic network undirected TS5 3686 0.64 2.56 2.2 | 0,090 | 0.67 —0.240
E protein interactions undirected 2115 2240 212 .80 2.4 0.072 0.071 —0.156
Eﬂ marine food web directed 135 598 4.43 2.05 - | 0.16 0.23 —0.263
E freshwater food web directed 02 o7 10.584 1.90 — 0,20 0.087 —0.326
neural network directed 307 2359 7.68 3.97 - 0.18 0.28 —0.226




A “Canonical” Natural Network has...

= few connected components:

= often only 1 or a small number, indep. of network size
= Small diameter:

= often a constant independent of network size (like 6)

= Or perhaps growing only logarithmically with network size
or even shrink?

« typically exclude infinite distances
= A /igh degree of clustering:
= considerably more so than for a random network
= in tension with small diameter
= A heavy-tailed degree distribution:
= a small but reliable number of high-degree vertices
« Often of power law form
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Probabilistic Models of Networks

= All of the network generation models we will study are
probabilistic or statistical in nature

= They can generate networks of any size

= They often have various parameters that can be set:
= Size of network generated
= average degree of a vertex
= fraction of long-distance connections

= The models generate a distribution over networks

= Statements are always statistical in nature:
= with high probability, diameter is small
= On average, degree distribution has heavy tail

= Thus, we're going to need some basic statistics and
probability theory
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Social Network Analysis

= Social Network Introduction
= Statistics and Probability Theory

= Models of Social Network Generation

| V,

= Networks in Biological System
= Mining on Social Network

= Summary
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Probability and Random Variables

= A random variable X is simply a variable that probabilistically assumes
values in some set

= set of possible values sometimes called the sample space S of X

= Sample space may be small and simple or large and complex
= S = {Heads, Tails}, X is outcome of a coin flip
= S={0,1,...,U.S. population size}, X is number voting democratic

« S =all networks of size N, X is generated by preferential attachment

= Behavior of X determined by its distribution (or density)
= for each value x in S, specify Pr[X = X]
= these probabilities sum to exactly 1 (mutually exclusive outcomes)
= complex sample spaces (such as large networks):
« distribution often defined /mplicitly by simpler components
= might specify the probability that each edge appears independently
=« this /nduces a probability distribution over networks

= may be difficult to compute induced distribution
December 9, 2008 Data Mining: Concepts and Techniques
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Some Basic Notions and Laws

s Independence.
= let X and Y be random variables
= independence: for any x and y, Pr[X = X & Y = y] = Pr[X=x]Pr[Y=y]
= intuition: value of X does not influence value of Y, vice-versa
= dependence:
= e.g. X, Y coin flips, but Y is always opposite of X
s Expected (mean) value of X:
= only makes sense for numeric random variables

\

= “average” value of X according to its distribution

= formally, E[X] = 2 (Pr[X = x] X), sum is over all x in S

= often denoted by pn

= alwaystrue: E[X + Y] = E[X] + E[Y]

= true only for /ndependent random variables: E[XY] = E[X]E[Y]
s lariance of X:

=« Var(X) = E[(X — n)2]; often denoted by ¢”2

« Standard deviationis sqrt(Var(X)) = o
s Union bound:

= forany X, Y, Pr[(X=x & Y=y] <= Pr[X=x] + Pr[Y=y]
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Convergence to Expectations

= Let Xy, X,,..., X, be:
= /ndependent random variables
= With the same distribution Pr[X=x]
= expectation p = E[X] and variance c?
= independent and identically distributed (i.i.d.)
= essentially n repeated “trials” of the same experiment
= hatural to examine r.v. Z = (1/n) X X,, where sum is over i=1,...,n
= example: number of heads in a sequence of coin flips
= example: degree of a vertex in the random graph model
« E[Z] = E[X]; what can we say about the distribution of Z7?

m  Central Limit Theorem:

= as n becomes large, Z becomes normally distributed
= With expectation p and variance o2/n
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The Normal Distribution

= The normal or Gaussian density:
= applies to continuous, real-valued random variables

» characterized by mean (average) m and standard deviation
S
« density at x is defined as
= (1/(c sqrt(2n))) exp(-(x-p)*/2c?)
= special case u = 0, o = 1: a exp(-x%/b) for some constants a,b > 0
= peaks at X = p, then dies off exponentially rapidly
» the classic “bell-shaped curve”
= exam scores, human body temperature,
= remarks:

= can control mean and standard deviation independently

= can make as “broad” as we like, but always have finite variance
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The Normal Distribution
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The Binomial Distribution

= coin with Pr[heads] = p, flip n times
= probability of getting exactly k heads:
= choose(n,k) p&(1-p)k
= for large n and p /ixed:
= approximated well by a normal with
u = np, o = sqrt(np(1-p))
= o/u > 0as ngrows
= leads to strong large deviation bounds
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The Poisson Distribution

| I I | - 1 1 A 48 I |

= like binomial, applies to variables taken on integer values > 0
= oOften used to model counts of events
= number of phone calls placed in a given time period
= number of times a neuron fires in a given time period
= Single free parameter A
= probability of exactly x events:
= exp(-1) WX/x!
= mean and variance are both A
= binomial distribution with n large, p = A/n (A fixed)
= converges to Poisson with mean A
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Heavy-talled Dist
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Paretfo or power law distributions:

= for variables assuming integer values > 0

= probability of value x ~ 1/x"a

= typically 0 < a < 2; smaller a gives heauvier talil
= sometimes also referred to as being scale-free

For binomial, normal, and Poisson distributions the tail
probabilities approach 0 exponentially fast

Inverse polynomial decay vs. /nverse exponential decay
What kind of phenomena does this distribution model?

What kind of process would generafe it?
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Distributions vs. Data

All these distributions are /dealized models

In practice, we do not see distributions, but gata

Thus, there will be some /argest value we observe

Also, can be difficult to “eyeball” data and choose model

So how do we distinguish between Poisson, power law, etc?

Typical procedure:
= Might restrict our attention to a range of values of interest
= accumulate counts of observed data into equal-sized bins
= look at counts on a /og-/log plot

= hote that

= power law:
log(Pr[X = x]) = log(1/x*) = -a log(x)
linear, slope —a.

= Normal:
log(Pr[X = x]) = log(a exp(-x3/b)) = log(a) — x3/b
non-linear, concave near mean

= Poisson:
log(Pr[X = x]) = log(exp(-1) A¥/x!)
also non-linear
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= Look at the frequency of English words:
=« the” is the most common, followed by “of”, “to”, etc.

o IcIaim: fre1 uency of the n-th most common ~ 1/n (power
aw, a =

= General theme:
= /ank events by their frequency of occurrence
= resulting distribution often is a power law!
= Other examples:
= North America city sizes
= personal income
=« file sizes
= genus sizes (number of species)

= People seem to dither over exact form of these distributions
(e.g. value of a), but not heavy tails
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ZIpf’'s Law

The same data plotted on linear and logarithmic scales.
Both plots show a Zipf distribution with 300 datapoints
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