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4. ERDŐS-RÉNYI AND WATTS-STROGATZ GRAPHS



𝐺bipartite 𝑈, 𝑉, 𝐸 , where 𝑈 = 𝑁 and  𝑉 = 𝑀. As there are 

no links between nodes within U (or within V) the 𝑁 + 𝑀 ×
(N + M) joint adjacency matrix 𝑨 𝑈, 𝑉 will be:
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1 0 0
0 0 0
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0 0 0
0 0 0
0 0 0

U

V

U V
Enough: the NXM (or MXN) matrix

Projection onto U:
𝑨 𝑈 = 𝑨 𝑈, 𝑉 𝑨𝑇 𝑈, 𝑉
= 𝑨 𝑈, 𝑉 𝑨 𝑉, 𝑈

Onto  V: 
𝑨 𝑉 = 𝑨 𝑉, 𝑈 𝑨𝑇 𝑉, 𝑈 =
𝑨 𝑉, 𝑈 𝑨 𝑈, 𝑉

𝐴(𝑉)𝑖𝑗 =  

𝑘

𝐴(𝑈, 𝑉)𝑖𝑘𝐴(𝑉, 𝑈)𝑘𝑗

=
3 1 0
1 2 0
0 0 1

1 0 1

1
0

1
2

With multiplicities! 

𝐴𝑖𝑖 = # links to 𝑈 at 𝑖
𝐴𝑖𝑗 = # connections between

𝑖 and 𝑗 (𝑖 ≠ 𝑗)Projection to V



As technology advances: we a) get access to b) 

create large networks

How to model the observed networks?

We can easily generate regular networks (e.g., 

lattices) but in real networks there is usually a large 

amount of randomness.

Take the opposite view: Generate the most random 

network!



If we do not know anything else than the number N of 

nodes and the number L of links, the simplest thing to 

do is to put the links at random (no correlations)

N =10, L= 8 Paul (Pál) Erdős Alfréd Rényi



This is one realization of the (N,L) E-R model.

The links can be put in many different ways. This 

defines an ensemble of graphs: the E-R model.

Probabilistic definition: 

# possible links:

probability of having a link between any two nodes:
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This is the G(N, p) model



N =12

p =1/6
Lmax = 11*6=66     <L> = 11 

L = 12 L = 11 L = 8



N =100

p =0.03

The probability of one particular configuration G

P G(N, p;L)( ) = pL (1- p)Lmax-L
due to independence



Lmax(Lmax -1)(Lmax -2) (Lmax -L+1)

How many ways can we put L links on Lmax places?

(Combinatorics)

If we have a sequence of L links, then the first can 
be put on Lmax places, the second on Lmax –1, the 

third on Lmax – 2, … the last on, leading to 

different possibilities. However, the sequence does 

not matter, thus we have to divide the result by the 

number of different sequences, which is 
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How many ways can we put L links on Lmax places?

The result is:

The probability of finding a graph with exactly L links: 
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Binomial distribution
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Binomials: P(N,p;L) is normalized
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We show that 

L = pLmax    and    L2 = pLmax + p2Lmax(Lmax -1)
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s 2 = L2 - L
2

= pLmax + p2Lmax (Lmax -1)- p2Lmax

2 =

Lmaxp(1- p)



As the network size increases, the distribution becomes 

more and more narrow — the degree of a node is with high 

probability in the vicinity of <k>.

Select k 

nodes from 

N-1

probability 

of 

having k

edges

probability 

of 

missing N-

1-k

edges
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Degree distribution



Given a distribution 𝑃 𝑖 with 𝑖 = 0,1, 2 … the generating 

function is defined as 𝐺 𝑥 =  𝑖 𝑃(𝑖)𝑥𝑖.

𝑃 𝑖 =  
1

𝑖!

𝑑𝑖𝐺(𝑥)

𝑑𝑥𝑖
𝑥=0

thus 𝐺 𝑥 is equivalent to 𝑃(𝑖).
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 𝜆 = 𝑝 𝑁 − 1 = 𝑘

= 𝐺Poisson(𝑥; 𝜆)

𝑝 → 0



Approximation to the binomial distribution for large N 

and fixed <k> (meaning small p).
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Exact Result

-binomial distribution-

Large N limit

-Poisson distribution-

  

< k >=< k >

  

< k >= (N -1)p

  

< k2 >= p(1- p)(N -1) + p2(N -1)2

  

< k2 >=< k > (1+ < k >)

  

s k = (< k2 > - < k >2)1/ 2 = [p(1- p)(N -1)]1/ 2

  

s k = (< k2 > - < k >2)1/ 2 =< k >1/ 2



Poisson distribution is narrow:

The chance to have degree much larger than <k> is 

VERY small:

For k=10 it is P(k>10<k>) < 2X10-13

What about reality?



According to sociological research, for a typical 

individual k ~1,000

The probability to find an individual with degree 

k>2,000 is 10-27. 

Given that N ~109, the chance of finding an individual 

with 2,000 acquaintances is so tiny that such nodes 

are virtually non-existent in a random society.

a random society would consist of mainly average 

individuals, with everyone with roughly the same 

number of friends. 

It would lack outliers, individuals that are either 

highly popular or recluse.



ER fails!

Why do we study it?

Basic reference model: The absolute random limit.

Many properties can be calculated – good playground 

to test tools.



What do we know?   LLL pp
L
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Binomial distribution

L = pLmax    and    L2 = pLmax + p2Lmax(Lmax -1)
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Clustering coefficient C

The prob. that two neighbors are neighbors of 

each other. Since in the ER model the probability  

of a link is always p, we have 

Small! 
C = p = L /

N(N -1)

2
=

2 L

N(N -1)
=
k

N -1

In (large) social networks there are plenty of triangles!

(Another problem with ER!)



Percolation transition (in a complete graph) 

If p is very small – only small isolates

If p is large – giant component (+ isolates)

Where is the transition?

u prob. that a randomly chosen node does NOT 

belong to the giant component. (Either not connected 

or connected to a node not connected to the giant)
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Tree property!

Giant comp. 

near crit. point
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euP 11 Is the prob. that a node 

belongs to the giant comp.
Graphical solution: 
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d At transition P∞= 0 

<k>c = 1 Newmann book

P∞

<k>
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How does P∞ depend on ε = <k> - <k>c = <k> - 1?

At transition P∞= 0 and <k>c = 1

Near the transition P∞ is still small. Let 𝑦 = 𝑘 𝑃∞
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P(k) is narrow and for small < 𝑘 > −1 there are no loops.

Let us substitute the network nodes such that they all 
have the degree <k> (even if this is not an integer). The 

average # nodes at (geodesic) distance s is <k>s. 

Exponential network:
























1 if  as 
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1 if  as 

1
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For <k> < 1 no giant 

component. N ≈ <k>s

For <k> > 1 there is giant 

component.



Pathlengths proportional to s 

k
s

» N    or    s »
lnN

ln k

Small world

The length of the average 

distance grows only 
logarithmically with N

N 100 10,000 1,000,000 10a

s 2 4 6 a



ER model (large n limit)

• Random graph (ensemble)

• No correlations

• Sharp distribution of degrees

• Small clustering coefficient

• Percolation transition at <k> = 1

• Small world properties (in the giant component)

This is the model. What about reality?



As quantitative data about real networks become available, 

we can compare their topology with the predictions of 

random graph theory. Note that once we have  N and  <k> 

for an ER random network, from it we can derive every 

measurable property. Indeed, we have:

Average distance:

Clustering Coefficient: 

Degree Distribution:

< drand >»
logN

log k

Crand = p =
k

N

Prand (k) @CN-1

k pk (1- p)N-1-k P(k) = e-<k> < k >k

k!



Real networks have short 

distances

like ER random graphs. 

Prediction: Data:

- Food web

- Neural network

- Collaboration networks

- WWW

- Metabolic networks

- Internet

All small worlds!

Average distance:

< drand >»
logN

log k



Crand =
k

N

Prediction: 
Real world NW-s

Crand underestimates the 

clustering coefficient of 

real networks

by orders of magnitudes!

Barabasi

Clustering coefficient



  

P(k) » k-g

Prand (k) @CN-1

k pk (1- p)N-1-k

Prediction: Data:

(a)Internet;

(b) Movie Actors;

(c)Coauthorship, 

high energy 

physics;

(d) Coauthorship, 

neuroscience 

Data follow 

power laws
Barabasi

Degree distribution



Green line: Poisson



By comparing the measures as obtained from the data and 

from the model, it becomes clear that the model is far from 

reality. No real system is properly described by it.

Average distance:

Clustering Coefficient: 

Degree Distribution:

Crand = p =
k

N

Prand (k) @CN-1

k pk (1- p)N-1-k

B
a

ra
b

a
s

i

It seems to capture the small world property!

< drand >»
logN

log k



|Largest component|

~ log 𝑁 if 𝑘 < 1 subcritical

~𝑁2/3 if 𝑘 = 1 critical

~𝑁 if 𝑘 > 1 supercritical

Probability that a randomly selected node belongs to 

the largest component  0 for 𝑘 ≤ 1 when 𝑁 → ∞.

There is one and only one largest component (giant 

component) 𝑘 ≥ 1 when 𝑁 → ∞.



It is possible to calculate the critical N-dependence of 

𝑘 below which |subgraph| → 0 when 𝑁 → ∞.

If O ( 𝑘 ) < 𝑁𝜁 then |subgraph|  0;

if O ( 𝑘 ) > 𝑁𝜁 then |subgraph| > 0 when 𝑁 → ∞.



Finite components are trees: 

𝑃 𝑠 𝑘 =  

𝑠1

…  

𝑠𝑘

 

𝑗=1

𝑘

𝑝𝑠𝑗
𝛿 𝑠 − 1,  

𝑗

𝑠𝑗

Prob. that a node belongs to component of size s: 𝑝𝑠



𝑃 𝑠 𝑘 =  

𝑠1

…  

𝑠𝑘

 

𝑗=1

𝑘

𝑝𝑠𝑗
𝛿 𝑠 − 1, 

𝑗

𝑠𝑗

𝑝𝑠 =  

𝑘=1

∞

𝑃(𝑘) 𝑃 𝑠 𝑘 =  

𝑘=1

∞

𝑒−𝜆
𝜆𝑘

𝑘!
 

𝑠1

…  

𝑠𝑘

 

𝑗=1

𝑘

𝑝𝑠𝑗
𝛿 𝑠 − 1,  

𝑗

𝑠𝑗

Generating function 𝑔 𝑧 =  𝑠=1
∞ 𝑝𝑠𝑧

𝑠

𝑔 𝑧 =  

𝑠=1

∞

𝑧𝑠𝑒−𝜆  

𝑘=1

∞
𝜆𝑘

𝑘!
 

𝑠1

…  

𝑠𝑘

 

𝑗=1

𝑘

𝑝𝑠𝑗
𝛿 𝑠 − 1,  

𝑗

𝑠𝑗



𝑔 𝑧 =  

𝑠=1

∞

𝑧𝑠𝑒−𝜆  

𝑘=1

∞
𝜆𝑘

𝑘!
 

𝑠1

…  

𝑠𝑘

 

𝑗=1

𝑘

𝑝𝑠𝑗
𝛿 𝑠 − 1,  

𝑗

𝑠𝑗

= 𝑒−𝜆  

𝑘=1

∞
𝜆𝑘

𝑘!
 

𝑠1

…  

𝑠𝑘

 

𝑗=1

𝑘

𝑝𝑠𝑗
𝑧1+ 𝑗 𝑠𝑗 =

𝑒−𝜆𝑧  

𝑘=1

∞
𝜆𝑘

𝑘!
 

𝑠1

…  

𝑠𝑘

 

𝑗=1

𝑘

𝑝𝑠𝑗
𝑧𝑠𝑗 =

𝑒−𝜆𝑧  

𝑘=1

∞
𝜆𝑘

𝑘!
 

𝑠

𝑝𝑠𝑧
𝑠

𝑘

= 𝑧 𝑒𝑥𝑝 𝜆 𝑔(𝑧) − 1 = 𝑔(𝑧)



For k > 1, the average size of small (not giant) 

components gets independent of N.

The average size 𝜒 of finite clusters is: 

𝜒 =
𝑠𝑝𝑠

𝑝𝑠
=

1

1 − 𝑘 + 𝑘 𝑃∞

where 𝑝𝑠 is the prob. that a randomly chosen node 

belongs to a finite component of size s, and 𝑃∞ is 

the relative weight of the giant component.

As 𝑃∞ vanishes as 𝜀 = 1 − 𝑘 , we have

𝜒 ~ 𝜀−𝛾 with 𝛾 = 1.

(for derivation see Newman’s book)



Erdős-Rényi model: 

- Simplest

- No correlations

- Many features calculable

- Sharp degree distribution (Poisson for large 𝑁)

- 𝐶 → 0 as 𝑁 → ∞.

- Percolation transition at 𝑘 = 1, 𝛽 = 1, 𝛾 = 1.

- Small world for 𝑘 > 1 due to exponential 

graph structure.

- Basic reference model



Frigyes Karinthy: 

Chains (1929)



Stanley Milgram experiment

He gave letters addressed to a Boston broker to people

in the Midwest and asked them to hand them to 

acquaintees such that using only personal contacts the 

letters should find the broker as soon as possible.

More scientifically:



The rules of the Milgram game:

1. ADD YOUR NAME TO THE ROSTER AT THE BOTTOM OF THIS 

SHEET, so that the next person who receives this letter will know who it came 

from.

2. DETACH ONE POSTCARD. FILL IT AND RETURN IT TO HARVARD 

UNIVERSITY. No stamp is needed. The postcard is very important. It allows us 

to keep track of the progress of the folder as it moves toward the target person.

3. IF YOU KNOW THE TARGET PERSON ON A PERSONAL BASIS, 

MAIL THIS FOLDER DIRECTLY TO HIM (HER). Do this only if you have 

previously met the target person and know each other on a first name basis.

4. IF YOU DO NOT KNOW THE TARGET PERSON ON A PERSONAL 

BASIS, DO NOT TRY TO CONTACT HIM DIRECTLY. INSTEAD, MAIL THIS 

FOLDER (POST CARDS AND ALL) TO A PERSONAL ACQUAINTANCE WHO 

IS MORE LIKELY THAN YOU TO KNOW THE TARGET PERSON. You may 

send the folder to a friend, relative or acquaintance, but it must be someone 

you know on a first name basis.



Wikipedia



- Only small fraction reached the target person 

(24/120)

- Broad distributions of chain lengths (2-10), with an 

average of 5.5 ”Six degrees of separation” 

- „Mr. Jacobs”, a clothing merkant played a key role in 

forwarding letters to the target

- The general scheme is that first geographic aspects 

dominate the search until the inner circle of the target 

is reached.

„What a small world!”



Enormous impact (see also: 

John Guare’s play, Fred 

Schepisi’s film, Kevin Bacon 

game, Erdős number)

Sixdegrees.com (1997-2001), 

Facebook app, 

LinkedIn etc   



D. Watts repeated the experiment on the 

Internet 2003. More than 60,000 people 

from 166 different countries were 

approached in the experiment. Participants 

were assigned one of 18 target people. 
Task: contact a specific one 

by sending email to people 

they already knew and 

considered potentially 

"closer" to the target. The 

targets were chosen at 

random, e.g., an Australian 

policeman and a veterinarian 

from Norway. 384 of 24,163 

chains were completed with a 

mean of 4.01, median 5-6.



Obama

Me

Distance through

handshakes

Me

..

..

..

Obama

Me

Viktor Orbán

Obama

V.O.



Mach more interesting: Kevin Bacon game

Try to find the shortest chain of actors

between an arbitrarily chosen actor or 

actress and Kevin Bacon such, that a link between two 

actors is a movie where the they played together. 

This is path on a bipartite graph and you are looking 

for the shortest one

Introduce the Bacon number B as the distance on 

the projected graph of actors.

B=0 Kevin Bacon

B=1 Julia Roberts, Kevin Costner, Tom Hanks

B=2, Anouk Aimée, Leonardo DiCaprio, 

B=3 Judit Pogány, Charles Chaplin (!)



How do I know?

From Oracle: http://oracleofbacon.org/

Uses IMDb: Internet Movie Database 

http://www.imdb.com/

I could not find B>3, although Bacon is not that 

famous (except of the game!) .

But in one step you are at a famous actor.



Let us be more scientific!

Paul Erdős (1913-1996)

An eccentric mathematician, 

no home, all property one 

suitcase, travelling around 

the globe and collaborating 

with 511 people in almost all 

fields of mathematics 

resulting in more than 1500 

papers .

Collaborative distance from Erdős on the bipartite 

graph of mathematicians and papers defines the 

Erdős number. 



The bipartite graph of collaborations of mathematicians 

from the viewpoint of Erdős’ impact 



The Erdős graph is the 

projection of the collaboration 

graph onto the set of 

mathematicians (who have 

finite E).

Most mathematicians do 

have a small E

Average is 4. (There are 

close to 10,000 with E=2)

Paul Erdős (1913-1996)

My E?

Microsoft collaboration path checker:

http://academic.research.microsoft.com/VisualExplorer



We see on these examples that social networks are 

small worlds.   

Surprisingly, many other networks in nature and 

technology have also small average distance. 

Examples include:

- Internet, WWW

- Biochemical networks (genetic transcription, 

metabolic)

- Air traffic network

etc.

Universality: Is there some common mechanism?



ER graphs have small clustering!

+ narrow degree distribution

Regular lattices have absolutely narrow:

ki = 6 for all nodes (except 

the boundaries)

Graph distances between 

distant points in 2d Euclidan

sense go as L~N1/2

L
In d dimensions  <d> ~ N1/d  >> logN

Not small world



We know that the ER model leads to the small world

result with (basically) constant node degrees such

that it forms an exponential network without loops! 

(In fact, there are loops in the giant component, but 

close to <k>=1 they are negligible.)

But there are a lot of loops in a social network! Friends 

of friends get often friends, if A writes a paper with both 

B and C then there is high chance that B will write a 

paper with C too etc. Triangles are important!

ER has small clustering coefficient, while real (social) 

netrworks have high!



Challenge: How to match these two properties: High 

clustering AND small average distance.

Lattices can have high 

clustering. E.g. here 
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In d chain with second neighbor  links 

and periodic boundary conditions

Ci =
ni

D

ki (ki -1) / 2
=

3

2´3
=

1

2



ER: 

Small clustering (bad) small average distance (good)

Regular lattices:

Large clustering (good) large average distance (bad)

We do not know how to cure ER 

Can we do something with the lattices?



Duncan Watts      Steven Strogatz

Watts-Strogatz model

(1998):

There are communities 

(e.g., villages), where 

people know each 

other well  high 

clustering

But in the villages there are a few persons who 

travel, know people from other villages etc. They 

decrease the length of the paths.



v1: WS model: Take a lattice with high clustering and 

rewire p fraction of the links. p  1: ER graph

v2: Alternative version: Take the lattice and connect 

nodes with p probability. For p  1 complete graph

v3: : Take the lattice, go through the links and draw a 

bridge to a random node with prob. p. Differs from v2 in 

large p limit. 

Any high clustering lattice would do in any dimension.



Between the two red lines clustering is high and av. 

distance low! Problem solved! (?)



In the small world of the Watts Strogatz model people 

are still rather uniform. They have more or less the same 

number of acquaintances – only few of them have the 

chance to break out of this boring world.

What is the degree distribution of the nodes in the WS 

model?



Degree distribution: Added links form an ER NW with 

prob p. If the original lattice has coordination number 

k0 we finally get for the distribiution of the  total degree 

k a shifted Poisson distribution.

pk = e-<k-k0> < k - k0 >k-k0

(k - k0 )!

pk

k
Sharply peaked, shifted Poisson



Global clustering coefficient: 𝐶 =
#triangles ×3

#connected triples

Take v3 with adding bridges to the c-ring: For every 

edge in the ring we add a bridge with prob. p. 

The expected # bridges 𝑠 = 𝑁𝑐𝑝/2, each can be put to 

𝑁(𝑁 − 1)/2 places  prob. that a pair of nodes is 

linked 
𝑁𝑐𝑝/2

𝑁(𝑁−1)/2
=

𝑐𝑝

𝑁−1
~

𝑐𝑝

𝑁
. The probability of creating a 

triangle by a bridge is negligible for 𝑁 → ∞.

The number of ∆-s on a ring with 𝑐 = 𝑘 and N nodes 
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𝑐 = 4 ring

One bridge creates 2𝑐 new triples,

bridges contribute this way by 

2𝑐 × 𝑁𝑐𝑝/2 = 𝑁𝑐2𝑝
Another contribution comes from 

bridges ending at the same node.

If there are m such nodes at a vertex, 𝑚 𝑚 − 1 /2 new

triples are created. m has Poisson distribution with

mean cp (ER):
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There are 𝑁𝑐(𝑐 − 1)/2 triples in the 
original ring, which all survive.
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𝑁 = 1000, 𝑐 = 4



Handwaving argument for 

diameter

First we ignore the further neigh-

bor links - unimportant for order 

of magnitude estimation (and 

would anyway shorten 𝛿𝑅).

𝛿𝑅 we can approximate it by

the length of larges gap between

two neighboring bridge heads.

p=1/6

Without bridges 𝛿𝑅 ~𝑁. If we put the s bridges regularly, 

i.e. with an angle of 2𝜋/𝑝𝑁, the largest distance would

not depend on N ! (𝛿𝑅~𝑁/(𝑠/2) ~1/𝑐𝑝.This is an 

underestimation as due to randomness there will be 

larger gaps. 



A further simplification: In the 

model we go around the ring 

and at every node we generate 

a bridge with prob. p, which, 

has another end possibly 

shortening a gap. We ignore 

that (and overestimate the 

gaps).

How to take randomness into account?

What is the expectation of the largest gap?

𝛿𝑅(𝑁)~𝔼[max ∆ 𝑁 ].

First: ℙ ∆ = 𝐶(𝑝)(1 − 𝑝)∆ with 𝐶 𝑝 = 1/  ∆=0
𝑁 (1 − 𝑝)∆



Large N: What is the expectation of the largest gap from 

N trials on an infinite ring?

ℙ ∆ = 𝑝(1 − 𝑝)∆ continuum limit ℙ ∆ =
1

𝑤
𝑒  −∆ 𝑤

with 𝑤 =  (1 − 𝑝) 𝑝 = 𝔼 ∆ .  ℙ ∆< 𝑛 = 1 − 𝑒  −𝑛 𝑤

Let 𝑋𝑁 = max∆(𝑁)

ℙ 𝑋𝑁 < 𝑥 = ℙ ∆< 𝑥 𝑁 = 1 − 𝑒  −𝑥 𝑤 𝑁

𝔼 𝑋𝑁 increases with N. How? If we find a function 𝑓(𝑁)
so that the distribution ℙ 𝑋𝑁 − 𝑓 𝑁 converges to a limit 

distribution: 𝔼 𝑋𝑁 ~ 𝑓(𝑁).              Here: 𝑓 𝑁 = ln 𝑁

ℙ 𝑋𝑁 − ln(𝑁) < 𝑥 = ℙ 𝑋𝑁 < 𝑥 + ln(𝑁)

= 1 − 𝑒  −(𝑥 𝑤+ln(𝑁)) 𝑁
= 1 −

𝑒−𝑥/𝑤

𝑁

𝑁

→ 𝑒−𝑒−𝑥/𝑤

Gumbel-d
𝜹𝑹 𝑵 ~𝐥𝐧(𝑵)



Summary of the WS model:

- Combines large clustering of some lattices with 

short average distance due to cross links

- Reflects some aspects of social networks   

(communities with high clustering connected  

by long distance links).

- It has a sharp degree distribution – in contrast    

with real world networks



a) Exponential network, e.g., Cayley tree:

𝑁𝑡~ 𝑘 − 1 𝑡; while 𝑑 ~𝑡

As ER is tree like and has sharp 

𝑃 𝑘 , it is in this category

b) Watts Strogatz: Bridges 

Other route?



Navigation

Milgram’s problem is „solved” by a greedy algorithm

Target Greedy algorithm: 3 steps

Decentralized search: 2 steps

How many steps needed to find a target? Depends on the

architecture. Average delivery time  as calculated from 

greedy algorithm for pairs of nodes.

Shorter than 6 degrees of separation!



Lattice without shortcuts: 

  

t ~ L
Jon Kleinberg’s navigability problem: How do shortcuts

influence the delivery time?
1 shorcut of length l is introduced with prob. for 

each lattice site.   

  

P( ) ~ -a

d
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There is an optimum for alpha!

Only at navigability point is 

greedy algorithm good!



Homework:

Generate WS graphs from rings with first and second 

neighbor connections (version 2: add links between 

nodes with probability 𝑝) with 𝑝 = 0.05 and different 

𝑁-s. 

Calculate average distance 𝑑𝐷 of diametric points.

For every value of 𝑁 many samples are needed. 

Go with 𝑁 to possibly large sizes.

How does 𝑑𝐷 depend on 𝑁?


