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Comunità

● Insieme di nodi “simili”
● Similitudini:

● Caratteristiche comuni
– Topologiche / Semantiche

● Interazioni
● … una qualsiasi misurabile funzione di “similitudine”

● Caveat
● I nodi potrebbero non conoscere la propria 

appartenenza
● I link possono essere positivi o negativi



  

Quali comunità?



  

Come individuarle?



[Girvan Newman!PNAS!‘02]

 Divisive hierarchical clustering based on edge 
b tbetweenness:

Number of shortest paths passing through the edge

 Girvan Newman Algorithm: Girvan Newman!Algorithm:

 Repeat until no edges are left:
 Calculate betweenness of edges

 Remove edges with highest betweenness

 Connected components are communities

 Gives a hierarchical decomposition of the networkGives a hierarchical decomposition of the network
 Example:
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[Newman Girvan!PhysRevE ‘03]

 Zachary’s Karate club: Zachary s Karate club: 

hierarchical decomposition
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[Newman Girvan!PhysRevE ‘03]
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Communities!in!physics!collaborations!



Define modularity to beDefine modularity to be

Q = (number of edges within groups) –

(expected number within groups)(expected number within groups)

Actual number of edges between i and j is

Expected number of edges between i and j is
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m…number!of!edges



 Q = (number of edges within groups) Q = (number of edges within groups) –

(expected number within groups)

 Then: Then: m … number of edges

Aij … 1 if (i,j) is edge, else 0

ki … degree of node i

ci group id of node i 
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 Modularity lies in the range ["1,1]

ci … group id of node i

-(a, b) … 1 if a=b, else 0
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 It is positive if the number of edges within groups 

exceeds the expected number

 0.3<Q<0.7 means significant community structure
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 Modularity is useful for selecting the Modularity is useful for selecting the 

number of clusters:
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Why!not!optimize!modularity!directly?



 Consider splitting the graph in two communities Consider splitting the graph in two communities

 Modularity Q is: , *
2

ji

ij
m

kk
Ay

 Or we can write in matrix form as
groupsame

in, 2ji m

 s … vector of group memberships si={+1, #1}

 B … modularity matrix
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Note: each row (column) of B sums to 0



 Task: Find s0{ 1 +1}n that maximizes Q Task: Find s0{#1,+1} that maximizes Q

 Rewrite Q in terms of eigenvalues $i of B
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 To maximize Q, easiest way is to make s = 4u1

A i ll i h i h $ (l i l) Assigns all weight in the sum to $1 (largest eigval)

 (all other sTui terms zero because of orthonormality)

 Unfortunately elements of s must be 51 Unfortunately, elements of s must be 51

 In general, finding optimal s is NP#hard
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 Heuristic: try to maximize only the $1 term

 Similar in spirit to the spectral partitioning p p p g

algorithm (we will explore it next time)

 Continue the bisection hierarchicallyy
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 Fast Modularity Optimization Algorithm:Fast Modularity Optimization Algorithm:

 Find leading eigenvector u1 of modularity matrix B

 Divide the nodes by the signs of the elements of u1y g 1

 Repeat hierarchically until:

 If a proposed split does not cause 

modularity to increase declaremodularity to increase, declare 

community indivisible and do not split it

 If all communities are indivisible, stop

 How to find u1? Power method!

 Iterative multiplication, normalization kBv
v  

 Start with random v, until convergence:
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k

k
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 Also, can combine with other methods:,
 Randomly divide the nodes into two groups

 Move the node that, if moved, will increase Q the most

 Repeat for all nodes, with each node only moved onceepeat o a odes, t eac ode o y o ed o ce

 Once complete, find intermediate state with highest Q

 Start from this state and repeat until Q stops increasing

 Good results for “fine"tuning” the spectral methodGood results for fine tuning  the spectral method

 CNM Algorithm (Clauset"Newman"Moore ‘04):
 (1) Separate each vertex solely into n community(1) Separate each vertex solely into n community

 (2) Calculate #Q for all possible community pairs

 (3) Merge the pair of the largest increase in Q

 Repeat (2)&(3) until one community remainsRepeat (2)&(3) until one community remains

 Cross cut the dendogram where Q is maximum
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Fast modularityFast modularity

GN = Girvan!Newman, O(n3)

CNM = Greedy merging (n log2n)

 Issues with modularity:

 May not find communities with less than $m links

DA = External Optimization O(n2 log2 n)

 NP"hard to optimize exactly [Brandes et al. ‘07]
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 Undirected graph G(V E): 1
5

 Undirected graph G(V,E):

 Bi!partitioning task: 3

2
4

6

Bi partitioning task:

 Divide vertices into two disjoint groups (A,B)

5A B1

3

2

5

4
6

A B

 Questions:

 How can we define a “good” partition of G?g p

 How can we efficiently identify such a partition?
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 What makes a good partition? What makes a good partition?

 Maximize the number of within!group connections

 Mi i i th b f b t Minimize the number of between!group 

connections

1

2

5

3

2
4

6
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 Express partitioning objectives as a Express partitioning objectives as a 

function of the “edge cut” of the partition

C S f d i h l i Cut: Set of edges with only one vertex in a 

group:

A B
1

5

cut(A,B) = 2
1

3

2
4

6
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 Criterion: Minimum!cut Criterion: Minimum cut

 Minimise weight of connections between groups

minA B cut(A,B)
 Degenerate case:

minA,B cut(A,B)

Optimal cut Minimum cut

 Problem:

O l id t l l t ti Only considers external cluster connections

 Does not consider internal cluster connectivity
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[Shi Malik]

 Criterion: Normalized cut [Shi!Malik, ’97][ , ]

 Connectivity between groups relative to the density of 

each group

Vol(A): The total weight of the edges originating from group AVol(A): The total weight of the edges originating from group A. 

! Why use this criterion?

! Produces more balanced partitions

 How do we efficiently find a good partition? How do we efficiently find a good partition?

 Problem: Computing optimal cut is NP!hard
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 A: adjacency matrix of undirected G A: adjacency matrix of undirected G

 Aij =1 if (i,j) is an edge, else 0

 x is a vector in n with components (x x ) x is a vector in  n with components (x1,…, xn)

 just a label/value of each node of G

 What is the meaning of A x? What is the meaning of A!x?

 Entry yj is a sum of labels xi of neighbors of j
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 jth coordinate of Ax: j coordinate of Ax: 

 Sum of the x!values 

of neighbors of jof neighbors of j

 Make this a new value at node j

 Spectral Graph Theory: Spectral Graph Theory:

 Analyze the “spectrum” of matrix representing G

 Spectrum: Eigenvectors of a graph ordered by the Spectrum: Eigenvectors of a graph, ordered by the 

magnitude (strength) of their corresponding 

eigenvalues:eigenvalues:
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 Suppose all nodes in G have degree d Suppose all nodes in G have degree d

and G is connected

 What are some eigenvalues/vectors of G? What are some eigenvalues/vectors of G?

Ax = "x What is "?  What x?
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 What if G is not connected? What if G is not connected?

 Say G has 2 components, each d!regular

 What are some eigenvectors? What are some eigenvectors?

 x= Put all 1s on A and 0s on B or vice versa
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 Adjacency matrix (A): Adjacency matrix (A):

 n# n matrix

 A=[aij] aij=1 if edge between node i and jA [aij], aij 1 if edge between node i and j

1 2 3 4 5 6

1 0 1 1 0 1 0
1

5

2 1 0 1 0 0 0

3 1 1 0 1 0 0

4 0 0 1 0 1 1

1

3

2
4

6

 Important properties:

 Symmetric matrix

4 0 0 1 0 1 1

5 1 0 0 1 0 1

6 0 0 0 1 1 0

 Symmetric matrix

 Eigenvectors are real and orthogonal
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 Degree matrix (D): Degree matrix (D):

 n# n diagonal matrix

 D [d ] d d f d i D=[dii], dii = degree of node i

1 2 3 4 5 6

1 3 0 0 0 0 0

2 0 2 0 0 0 0

3 0 0 3 0 0 0

1

2

5

4
6

4 0 0 0 3 0 0

5 0 0 0 0 3 0

6 0 0 0 0 0 2

3
4

6 0 0 0 0 0 2

11/8/2010 29Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu



 Laplacian matrix (L):
1 2 3 4 5 6

p ( )

 n# n symmetric matrix
1 3  1  1 0  1 0

2  1 2  1 0 0 0

3  1  1 3  1 0 01
5

 What is trivial eigenvector/

3 3

4 0 0  1 3  1  1

5  1 0 0  1 3  1
3

2
4

6

 What is trivial eigenvector/
eigenvalue?

L = D - A

6 0 0 0  1  1 2

 Important properties:

 Eigenvalues are non!negative real numbersEigenvalues are non negative real numbers

 Eigenvectors are real and orthogonal
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 For symmetric matrix M: For symmetric matrix M:

Mxx
Mxx T

T

$$min"

 What is the meaning of min xTLx on G?

Mxx
xxT
$$min2"

 What is the meaning of min x Lx on G?
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 What else do we know about x? What else do we know about x?

 x is unit vector

 i th l t 1st i t (1 1) th x is orthogonal to 1st eigenvector (1,…,1) thus:

 Then:

2

2

2

)(
min

ji xx

%
% &

$"
All!l b li f! 22

ix%
All!labelings of!

nodes!so!that!

sum(xi)=0
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 Express partition (A,B) as a vectorp p ( , )

 We can minimize the cut of the partition by p y

finding a non!trivial vector x that minimizes:
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! The minimum value is given by the 2nd

smallest eigenvalue  2 of the Laplaciansmallest eigenvalue  2 of the Laplacian

matrix L

 The optimal solution for x is given by the 

corresponding eigenvector  2, referred as 
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the Fiedler vector



 How to define a “good” partition of a graph? How to define a good  partition of a graph?

! Minimise a given graph cut criterion

 How to efficiently identify such a partition?

! Approximate using information provided by theApproximate using information provided by the 

eigenvalues and eigenvectors of a graph

l l i Spectral Clustering
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 Three basic stages: Three basic stages:

1. Pre!processing

! Construct a matrix representation of the graph! Construct a matrix representation of the graph

2. Decomposition

! Compute eigenvalues and eigenvectors of the matrix! Compute eigenvalues and eigenvectors of the matrix

! Map each point to a lower!dimensional 

representation based on one or more eigenvectors

3. Grouping

! Assign points to two or more clusters, based on the 

new representation
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 Pre!processing:
1 2 3 4 5 6

1 3  1  1 0  1 0p g
! Build Laplacian

matrix L of the 

graph

3

2  1 2  1 0 0 0

3  1  1 3  1 0 0

4 0 0  1 3  1  1

5  1 0 0  1 3  1g p

 Decomposition: 0.5 0.40.60.10.30.4

0.00.4 0.40.40.60.4

 0.5 0.4 0.2 0.50.30.4

3.0

1.0

0.0

 X!

6 0 0 0  1  1 2

p
! Find eigenvalues  

and eigenvectors x
of the matrix L

0.0 0.4 0.4 0.4 0.60.4

 0.50.4 0.2 0.5 0.30.4

 0.50.40.60.1 0.30.4

5.0

4.0

3.0
 = X!=

! Map vertices to 

corresponding How!do!we!now!

f d h l4

0.33

0.62

0.31

p g
components of  

2
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find!the!clusters?

 0.66

 0.35

 0.34



 Grouping:

! Sort components of reduced 1!dimensional vector

! Identify clusters by splitting the sorted vector in two

h l How to choose a splitting point?
! Naïve approaches: 

! Split at 0, mean or median valuep

! More expensive approaches:
! Attempt to minimise normalized cut criterion in 1!dimension

0 31
Split at 0:

 0.34

0.33

0.62

0.31
p

Cluster!A:!Positive!points

Cluster!B:!Negative!points

0 31 0 34

A B

 0.66

 0.35

3

0.33

0.62

0.31

 0.66

 0.35

 0.34
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 How do we partition a graph into k clusters? How do we partition a graph into k clusters?

 Two basic approaches:

! Recursive bi!partitioning [Hagen et al., ’92]

! Recursively apply bi!partitioning algorithm in a 

hierarchical divisive mannerhierarchical divisive manner

! Disadvantages: Inefficient, unstable

! Cluster multiple eigenvectors [Shi!Malik, ’00]p g [ , ]

! Build a reduced space from multiple eigenvectors

! Commonly used in recent papers

f bl h! A preferable approach…
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 k eigenvector Algorithm [Ng et al ’01] k!eigenvector Algorithm [Ng et al., 01]

! Pre!processing:

! Construct the scaled adjacency matrix A':! Construct the scaled adjacency matrix A :

! Decomposition:

2/12/1' !!
" ADDA

! Decomposition:

! Find the eigenvalues and eigenvectors of A'

! Build embedded space from the eigenvectorsBuild embedded space from the eigenvectors 

corresponding to the k largest eigenvalues

! Grouping:

! Apply k!means to reduced n#k space to get k clusters
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 Approximates the optimal cut [Shi!Malik, ’00]pp p [ , ]
! Can be used to approximate the optimal k!way normalized cut

 Emphasizes cohesive clusters
h i h di ib i f h d! Increases the unevenness in the distribution of the data

! Associations between similar points are amplified, associations 

between dissimilar points are attenuated

! Th d t b i t “ i t l t i ”! The data begins to “approximate a clustering”

 Well!separated space
! Transforms data to a new “embedded space”,Transforms data to a new embedded space , 

consisting of k orthogonal basis vectors

 NB: Multiple eigenvectors prevent instability due to 

f linformation loss
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 Eigengap: Eigengap:

! The difference between two consecutive eigenvalues

 Most stable clustering is generally given by theMost stable clustering is generally given by the 

value k that maximises eigengap:

 Example:
1!!"$ kkk   
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 1

p

max   !"$
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E
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12max   "$k

0

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k
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k=2



 Non overlapping vs overlapping communities Non overlapping!vs.!overlapping!!communities
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[Palla et al., ‘05]

 A node belongs to many social circles A!node!belongs!to!many!social!circles
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[Palla et al., ‘05]

 Two nodes belong to the same community if theyTwo!nodes!belong!to!the!same!community!if!they!
can!be!connected!through!adjacent!k cliques:

 k clique:

 Fully!connected!

graph!on!k nodes

 Adjacent k cliques:
4-clique

Adjacent!k cliques:

 overlap!in!k-1 nodes

 k clique!community

 Set!of!nodes!that!can!

be!reached!through!a!
sequence of adjacent

adjacent

3-cliques

sequence!of!adjacent!
k cliques
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[Palla et al., ‘05]

 Clique Percolation Method:Clique!Percolation!Method:

 Find!maximal cliques!(not!k cliques!)

 Clique!overlap!matrix:q p

 Each!clique!is!a!node

 Connect!two!cliques!if!they!
overlap in at least k-1 nodesoverlap!in!at!least!k 1 nodes

 Communities:

 Connected!components!of!
th li l t ithe!clique!overlap!matrix

 How!to!set!k?

 Set!k so!that!we!get!the!“richest”!(most!widely!
distributed!cluster!sizes)!community!structure
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[Palla et al., ‘05]

 Start!with!graph!g p
and!find!maximal!
cliques

 Create clique Create!clique!

overlap!matrix

 Threshold!the!

(1) Graph (2) Clique overlap 

matrix

matrix!at!value!k 1

 If aij<k-1 set!0

 Communities are Communities!are!

the!connected!

components!of!the!

thresholded matrix (3) Thresholdedthresholded matrix
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(3) Thresholded

matrix at k=4
(4) Communities

(connected components)



[Palla et al., ‘07]

Communities in a 

“tiny” part of a phone 

ll  t k f  calls network of 4 

million users 

[Barabasi!Palla, 2007]
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 Each node is a community Each!node!is!a!community

 Nodes!are!weighted!for!

community sizecommunity!size

 Links!are!weighted!for!

overlap sizeoverlap!size

 DIP!“core”!data!base!of!

protein!interactions!

(S.!cerevisiase,!yeast)
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Name Overlap Dir Weight Dyn NoPar MDim Incr Multip Complexity BESn BESm Year Ref

F
ea

tu
re

D
is

ta
n
ce

Evolutionary* X X O(n2) 5k ? 2006 [20]
MSN-BD X X O(n2ck) 6k 3M 2006 [21]
SocDim X X X O(n2 log n)∗ 80k 6M 2009 [23]
PMM X X O(mn2) 15k 27M 2009 [24]
MRGC X X X X O(mD) 40k ? 2007 [22]

Infinite Relational X X O(n2cD) 160 ? 2006 [25]
Find-Tribes X X O(mnK2) 26k 100k 2007 [26]
AutoPart X X X O(mk2) 75k 500k 2004 [29]
Timefall X X X O(mk) 7.5M 53M 2008 [31]

Context-specific Cluster Tree X X O(mk) 37k 367k 2008 [30]

In
te

rn
a
l
D

en
si

ty

Modularity X O(mk logn) 400k 2.5M 2004 [12]
Directed modularity X X O(n2 logn) 50 ? 2008 [55]

External Optimization X X O(n2 logn) 27k ? 2005 [56]
Local modularity X X O(n2) 400k 2.5M 2005 [57]

Modularity Unfolding X O(mk) 118M 1B 2008 [58]
Multislice modularity X X X X X O(mkD) 2k ? 2010 [59]

MetaFac X X O(mnD) ? 2M 2009 [60]
Variational Bayes X X O(mk) 115 613 2008 [61]
LA→ IS2* X X O(mk + n) 16k ? 2005 [62]

Local Density X X X O(nK logn) 108k 330k 2005 [63]

B
ri

d
g
e Edge Betweenness X O(m2n) 271 1k 2002 [4]

CONGO* X O(n log n) 30k 116k 2008 [95]
L-Shell X X O(n3) 77 254 2005 [96]

Internal-External Degree X O(n2 logn) 775k 4.7M 2009 [97]

D
iff

u
si

o
n

Label Propagation X X X O(m+ n) 374k 30M 2007 [109]
Node Colouring X X O(ntk2) 2k ? 2007 [110]

Kirchhoff X X O(m+ n) 115 613 2004 [111]
Communication Dynamic X X X X O(mnt) 160k 530k 2008 [112]

GuruMine X X O(TAn2) 217k 212k 2008 [8]
DegreeDiscountIC X O(k log n+m) 37k 230k 2009 [113]

MMSB X X O(nk) 871 2k 2007 [114]

C
lo

se Walktrap O(mn2) 160k 1.8M 2006 [131]
DOCS X ? 325k 1M 2009 [132]

Infomap X X O(m log2 n) 6k 6M 2008 [133]

S
tr

u
ct

u
re K-Clique X O(m

ln m

10 ) 20k 127k 2005 [3]
S-Plexes Enumeration O(mn) ? ? 2009 [142]

Bi-Clique X X O(m2) 200k 500k 2008 [141]
EAGLE X X X O(3

n

3 ) 16k 31k 2009 [143]

L
in

k Link modularity X X X O(2mk logn) 20k 127k 2009 [151]
Link Jaccard* X X X O(nK̄2) 885k 5.5M 2010 [152]

N
o
D Hybrid* X X X X O(nkK̄) 325k 1.5M 2010 [154]

Multi-relational Regression X X ? ? ? 2005 [155]
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