Web Mining e Analisi delle Reti Sociali

Community Discovery

Michele Berlingerio

MOVIE SEATING

PERMANENT LINK TO THIS COMIC: HTTP://XKCD.COM/173/ IMAGE URL (FOR HOTLINKING/EMBEDDING): HTTP://IMGS.XKCD.COM/COMICS/MOVIE_SEATING.PNG

Comunità

- Insieme di nodi "simili"
- Similitudini:
 - Caratteristiche comuni
 - Topologiche / Semantiche
 - Interazioni
 - ... una qualsiasi misurabile funzione di "similitudine"
- Caveat
 - I nodi potrebbero non conoscere la propria appartenenza
 - I link possono essere positivi o negativi

Quali comunità?

Come individuarle?

NOOES

Method1: Girvan-Newman

- Divisive hierarchical clustering based on edge betweenness:
 - Number of shortest paths passing through the edge
- Girvan-Newman Algorithm:
 - Repeat until no edges are left:
 - Calculate betweenness of edges
 - Remove edges with highest betweenness
 - Connected components are communities
 - Gives a hierarchical decomposition of the network
- Example:

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

[Newman-Girvan PhysRevE '03]

Girvan-Newman: Example

[Newman-Girvan PhysRevE '03]

Girvan-Newman: Example

How to select the number of clusters?

Define **modularity** to be

Q = (number of edges within groups) - (expected number within groups)

Actual number of edges between i and j is

$$A_{ij} = \left\{ \begin{array}{ll} 1 & \text{if there is an edge } (i,j), \\ 0 & \text{otherwise.} \end{array} \right.$$

Expected number of edges between *i* and *j* is

Expected number
$$=\frac{k_ik_j}{2m}$$
.

m...number of edges

Modularity: Definition

$$Q = \frac{1}{4m} \left[\sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j) \right]$$

c; €{A...k}
umber of edges

- m ... number of edges A_{ij} ... 1 if (i,j) is edge, else 0 k_i ... degree of node i c_i ... group id of node i $\delta(a, b)$... 1 if a=b, else 0
- Modularity lies in the range [-1,1]
 - It is positive if the number of edges within groups exceeds the expected number
 - 0.3<Q<0.7 means significant community structure</p>

Modularity: Number of clusters

Modularity is useful for selecting the number of clusters:

modularity

Method2: Modularity optimization

- Consider splitting the graph in two communities
- Modularity Q is: $\sum_{i,j \text{ in}} A_{ij} \frac{k_i k_j}{2m}$
- Or we can write in matrix form as

$$Q = \frac{1}{4m} \sum_{ij} \left(\frac{A_{ij} - \frac{k_i k_j}{2m}}{2m} \right) s_i s_j = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\overbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\overbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\overbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\overbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\overbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\overbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\overbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\overbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\overbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\overbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\underbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{\underbrace{}}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{B} \mathbf{s} \quad \underbrace{}^{\mathcal{T} \mathcal{B}_{\mathcal{N}}} \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{s}^T \mathbf{s}^T \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{s}^T \mathbf{s}^T \mathbf{s}^T \mathbf{s}_{ij} = \frac{1}{4m} \mathbf{s}^T \mathbf{s}^T$$

B ... modularity matrix

$$B_{ij} = A_{ij} - \frac{k_i k_j}{2m}$$

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

Note: each row (column) of B sums to 0

 $Q = Z B_{ij} A_{i} A_{j}$

= Z A; Z B; JAj

Fast Modularity Optimization

- Task: Find $s \in \{-1,+1\}^n$ that maximizes Q • Rewrite Q in terms of eigenvalues β_i of B $Q = s^T \left[\underbrace{\sum_{i=1}^{n} u_i \beta_i u_i^T}_{i=1} \right] s = \sum_i s^T u_i \beta_i u_i^T s = \sum_{i=1}^{n} (s^T u_i)^2 \beta_i$ $\beta_1 > \beta_2 > \beta_3 > \cdots$
 - To maximize Q, easiest way is to make $s = \lambda u_1$
 - Assigns all weight in the sum to β_1 (largest eigval)
 - (all other s^Tu_i terms zero because of orthonormality)
 - Unfortunately, elements of s must be ±1
 - In general, finding optimal s is NP-hard

Finding a splitting strategy

$$\operatorname{Mark}_{\mathcal{N}} Q = \sum_{i=1}^{n} \left(s^{\mathrm{T}} u_{i} \right)^{2} \beta_{i} \approx \left(\sum_{i=1}^{n} s_{i} u_{1i} \right)^{2} \beta_{1}$$

• Heuristic: try to maximize only the β_1 term

$$s_i = \left\{ egin{array}{cc} +1 & ext{if } i ext{th element of } \mathbf{u}_1 \geq \mathbf{0}, \ -1 & ext{if } i ext{th element of } \mathbf{u}_1 < \mathbf{0}. \end{array}
ight.$$

- Similar in spirit to the spectral partitioning algorithm (we will explore it next time)
- Continue the bisection hierarchically

Fast Modularity Optimization

Fast Modularity Optimization Algorithm:

- Find leading eigenvector u₁ of modularity matrix B
- Divide the nodes by the signs of the elements of u₁
- Repeat hierarchically until:
 - If a proposed split does not cause modularity to increase, declare community indivisible and do not split it
 - If all communities are indivisible, stop
- How to find u₁? Power method!
 - Iterative multiplication, normalization
 - Start with random v, until convergence:

Even more heuristic approaches

- Also, can combine with other methods:
 - Randomly divide the nodes into two groups
 - Move the node that, if moved, will increase Q the most
 - Repeat for all nodes, with each node only moved once
 - Once complete, find intermediate state with highest Q
 - Start from this state and repeat until Q stops increasing
 - Good results for "fine-tuning" the spectral method
- CNM Algorithm (Clauset-Newman-Moore '04):
 - (1) Separate each vertex solely into n community
 - (2) Calculate ΔQ for all possible community pairs
 - (3) Merge the pair of the largest increase in Q
 - Repeat (2)&(3) until one community remains
 - Cross cut the dendogram where Q is maximum

Comparison to other methods

		modularity Q							
network	size n	GN	CNM	DA	Fast modularity				
karate	34	0.401	0.381	0.419	0.419				
jazz musicians	198	0.405	0.439	0.445	0.442				
metabolic	453	0.403	0.402	0.434	0.435				
email	1133	0.532	0.494	0.574	0.572				
key signing	10680	0.816	0.733	0.846	0.855				
physicists	27519	—	0.668	0.679	0.723				

GN = Girvan-Newman, O(n³) CNM = Greedy merging (n log²n) DA = External Optimization O(n² log² n)

- Issues with modularity:
 - May not find communities with less than \sqrt{m} links
 - NP-hard to optimize exactly [Brandes et al. '07]

Method4: Graph partitioning

Undirected graph G(V,E):

R

- Bi-partitioning task:
 - Divide vertices into two disjoint groups (A,B)

- Questions:
 - How can we define a "good" partition of G?
 - How can we efficiently identify such a partition?

Graph partitioning

- What makes a good partition?
 - Maximize the number of within-group connections
- Minimize the number of between-group connections

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition
- Cut: Set of edges with only one vertex in a group: $cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$

Graph Cut Criterion

- Criterion: Minimum-cut
 - Minimise weight of connections between groups min_{A,B} cut(A,B)
- Degenerate case: "Optimal cut" Minimum cut
 Winimum cut
 Problem:
 - Only considers external cluster connections
 - Does not consider internal cluster connectivity

Graph Cut Criteria

- Criterion: Normalized-cut [Shi-Malik, '97]
 - Connectivity between groups relative to the density of each group $Ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$

Vol(A): The total weight of the edges originating from group A.

- Why use this criterion?
 - Produces more balanced partitions
- How do we efficiently find a good partition?
- Problem: Computing optimal cut is NP-hard

Spectral Graph Partitioning

- A: adjacency matrix of undirected G
 - A_{ij} =1 if (i,j) is an edge, else 0
- x is a vector in \Re^n with components $(x_1, ..., x_n)$
 - just a label/value of each node of G
- What is the meaning of *A x*?

Entry y_i is a sum of labels x_i of neighbors of j

What is the meaning of Ax?

Sum of the x-values of neighbors of j

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

- Make this a new value at node j
- Spectral Graph Theory:
 - Analyze the "spectrum" of matrix representing G
 - Spectrum: Eigenvectors of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues: $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$

$$\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$$

Example: d-regular graph

- Suppose all nodes in G have degree d and G is connected
- What are some eigenvalues/vectors of G?

 $Ax = \lambda x \quad \text{What is } \lambda ? \quad \text{What } x ?$ $x = (1, 1, \dots, 1) \qquad Ax = \lambda x$ $(1, \dots, 1) \qquad (1, \dots, 1) \qquad (1, \dots, 1)$ $A \cdot x = (1, d, d, d, \dots, d) \qquad (1, \dots, 1) \qquad (1, \dots, 1)$

Example: Graph on 2 components

What if G is not connected? Say G has 2 components, each d-regular Α What are some eigenvectors? x = Put all 1s on A and 0s on B or vice versa Ax= (0,0,0, d, 1., X' = (0, 0, 0, ..., 0, 1)1, 0 - _ 0) Ax = (A - A - J - J)×"=(1,

Matrix Representations

Adjacency matrix (A):

- *n×n* matrix
- $A = [a_{ij}], a_{ij} = 1$ if edge between node *i* and *j*

Important properties:

- Symmetric matrix
- Eigenvectors are real and orthogonal

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

Matrix Representations (continued)

Degree matrix (D):

- n×n diagonal matrix
- $D = [d_{ii}], d_{ii} = \text{degree of node } i$

	1	2	3	4	5	6	
1	3	0	0	0	0	0	
2	0	2	0	0	0	0	
3	0	0	3	0	0	0	
4	0	0	0	3	0	0	
5	0	0	0	0	3	0	
6	0	0	0	0	0	2	

Matrix Representations

5

6

- Laplacian matrix (L):
 - *n×n* symmetric matrix

• What is trivial eigenvector/ eigenvalue? $\chi = (1, 1, 1, 1, 1, 1)$ $L\chi = 0.$

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2
		Τ_			1	

- Important properties:
 - Eigenvalues are non-negative real numbers
 - Eigenvectors are real and orthogonal

2

λ_2 as optimization problem

• For symmetric matrix *M*:

$$\lambda_2 = \min_{\times} \frac{x^T M x}{x^T x} = x^T M x$$

• What is the meaning of min $x^{T}Lx$ on G?

$$x^{T}Lx = \sum_{\substack{(i,j) \in E}} (x_{i} - x_{j})^{2}$$

$$\chi^{T}Lx = \sum_{\substack{i \in I \\ i \notin I}} (x_{i} \times x_{j}) = \sum_{\substack{i \in I \\ i \notin I}} (y_{i} \times x_{j}) = \sum_{\substack{i \in I \\ i \notin I} (y_{i} \times x_{j}) = \sum_{\substack{i \in I \\ i \notin I} (y_{i} \times x_{j})$$

λ₂ as optimization problem

- What else do we know about x? • x is unit vector $\leq \chi_{i}^{2} = \underline{1}$
 - x is orthogonal to 1st eigenvector (1, ..., 1) thus: $\leq \chi_{1} \cdot 1 = \sum \chi_{1} = 0$

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

32

Find Optimal Cut [Fiedler'73]

- Express partition (A,B) as a vector $x_{i} = \begin{cases} +1 \text{ if } i \in A \\ -1 \text{ if } i \in B \end{cases}$
- We can minimize the cut of the partition by finding a non-trivial vector x that minimizes:

$$f(x) = \sum_{(i,j)\in E} (x_i - x_j)^2$$

Rayleigh Theorem

$$f(x) = \sum_{(i,j)\in E} (x_i - x_j)^2 = x^T L x$$

- The minimum value is given by the 2nd smallest eigenvalue λ₂ of the Laplacian matrix L
- The optimal solution for x is given by the corresponding eigenvector λ₂, referred as the Fiedler vector

()

So far...

- How to define a "good" partition of a graph?
 - Minimise a given graph cut criterion
 - How to efficiently identify such a partition?
 - Approximate using information provided by the eigenvalues and eigenvectors of a graph
 - Spectral Clustering

Spectral Clustering Algorithms

- Three basic stages:
 - 1. Pre-processing
 - Construct a matrix representation of the graph
 - 2. Decomposition
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
 - 3. Grouping
 - Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

- Pre-processing:
 - Build Laplacian matrix L of the graph

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1 0		0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

- Decomposition:
 - Find eigenvalues λ and eigenvectors x of the matrix L
 - Map vertices to corresponding components of λ₂

6

-0.6

Spectral Partitioning (continued)

Grouping:

- Sort components of reduced 1-dimensional vector
- Identify clusters by splitting the sorted vector in two

How to choose a splitting point?

- Naïve approaches:
 - Split at 0, mean or median value
- More expensive approaches:
 - Attempt to minimise normalized cut criterion in 1-dimension

2	0.6	
3	0.3	
4	-0.3	
5	-0.3	
6	-0.6	

0.3

Split at 0:

Cluster A: Positive points

Cluster B: Negative points

1	0.3	4
2	o.6	5
3	0.3	6

Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

-0.3

-0.3

-0.6

Example: Spectral partitioning

K-Way Spectral Clustering

- How do we partition a graph into k clusters?
- Two basic approaches:
 - Recursive bi-partitioning [Hagen et al., '92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable
 - Cluster multiple eigenvectors [Shi-Malik, '00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers
 - A preferable approach...

k-Eigenvector Clustering

- k-eigenvector Algorithm [Ng et al.,'01]
 - Pre-processing:
 - Construct the scaled adjacency matrix A': $A' = D^{-1/2} A D^{-1/2}$
 - Decomposition:
 - Find the eigenvalues and eigenvectors of A'
 - Build embedded space from the eigenvectors corresponding to the k largest eigenvalues
 - Grouping:
 - Apply k-means to reduced n×k space to get k clusters

Why use multiple eigenvectors?

- Approximates the optimal cut [Shi-Malik, '00]
 - Can be used to approximate the optimal *k*-way normalized cut
- Emphasizes cohesive clusters
 - Increases the unevenness in the distribution of the data
 - Associations between similar points are amplified, associations between dissimilar points are attenuated
 - The data begins to "approximate a clustering"
- Well-separated space
 - Transforms data to a new "embedded space", consisting of k orthogonal basis vectors
- NB: Multiple eigenvectors prevent instability due to information loss

How to select k?

Eigengap:

- The difference between two consecutive eigenvalues
- Most stable clustering is generally given by the value k that maximises eigengap: $\Delta_k = |\lambda_k \lambda_{k-1}|$
- Example:

Overlapping communities

Non-overlapping vs. overlapping communities

Overlaps of social circles

A node belongs to many social circles

Clique Percolation Method (CPM)

- Two nodes belong to the same community if they can be connected through adjacent k-cliques:
 - k-clique:
 - Fully connected graph on k nodes
 - Adjacent k-cliques:
 - overlap in k-1 nodes
- k-clique community
 - Set of nodes that can be reached through a sequence of adjacent k-cliques

4-clique

adjacent 3-cliques

[Palla et al., '05]

[Palla et al., `o5]

Method5: CPM: Steps

Clique Percolation Method:

- Find maximal-cliques (not k-cliques!)
- Clique overlap matrix:
 - Each clique is a node
 - Connect two cliques if they overlap in at least k-1 nodes
- Communities:
 - Connected components of the clique overlap matrix
- How to set k?

In martine & = 3, 4, 5

11/10/2010

k = 3

[Palla et al., '05]

CPM method: Example

- Start with graph and find maximal cliques
- Create clique overlap matrix
- Threshold the matrix at value k-1
 - If $a_{ij} < k-1$ set 0
- Communities are the connected components of the thresholded matrix

[Palla et al., `o7]

Example: Phone call network

Communities in a "tiny" part of a phone calls network of 4 million users [Barabasi-Palla, 2007]

11/10/2010

Example (2)

- Each node is a community
- Nodes are weighted for community size
- Links are weighted for overlap size
- DIP "core" data base of protein interactions (S. cerevisiase, yeast)

	Name	Overlap	Dir	Weight	Dyn	NoPar	MDim	Incr	Multip	Complexity	BESn	BESm	Year	Ref
	Evolutionary*				\checkmark			\checkmark		$\mathcal{O}(n^2)$	5k	?	2006	[20]
	MSN-BD			\checkmark					\checkmark	$\mathcal{O}(n^2 ck)$	6k	3M	2006	[21]
nce	SocDim	\checkmark		\checkmark			\checkmark			$\mathcal{O}(n^2 \log n) *$	80k	6M	2009	[23]
sta	\mathbf{PMM}			\checkmark			\checkmark			$\mathcal{O}(mn^2)$	15k	27M	2009	[24]
Dis	MRGC		\checkmark		\checkmark		\checkmark		\checkmark	$\mathcal{O}(mD)$	40k	?	2007	[22]
Ie	Infinite Relational					\checkmark	\checkmark			$\mathcal{O}(n^{2c}D)$	160	?	2006	[25]
ıtu	Find-Tribes				\checkmark				\checkmark	$\mathcal{O}(mnK^2)$	26k	100k	2007	[26]
Fe	AutoPart		\checkmark			\checkmark		\checkmark		$\mathcal{O}(mk^2)$	75k	500k	2004	[29]
	Timefall				\checkmark	\checkmark			\checkmark	$\mathcal{O}(mk)$	$7.5 \mathrm{M}$	53M	2008	[31]
	Context-specific Cluster Tree					\checkmark			\checkmark	$\mathcal{O}(mk)$	37k	367k	2008	[30]
	Modularity			\checkmark						$\mathcal{O}(mk\log n)$	400k	$2.5\mathrm{M}$	2004	[12]
	Directed modularity		\checkmark	\checkmark						$\mathcal{O}(n^2 \log n)$	50	?	2008	[55]
ity	External Optimization		\checkmark	\checkmark						$\mathcal{O}(n^2 \log n)$	27k	?	2005	[56]
SUS	Local modularity			\checkmark				\checkmark		$\mathcal{O}(n^2)$	400k	2.5M	2005	[57]
Ď	Modularity Unfolding			\checkmark						$\mathcal{O}(mk)$	118M	$1\mathrm{B}$	2008	[58]
lal	Multislice modularity		\checkmark	\checkmark	\checkmark		\checkmark		\checkmark	$\mathcal{O}(mkD)$	2k	?	2010	[59]
erı	MetaFac				\checkmark		\checkmark			$\mathcal{O}(mnD)$?	2M	2009	[60]
Int	Variational Bayes		\checkmark			\checkmark				$\mathcal{O}(mk)$	115	613	2008	[61]
	$LA \rightarrow IS^{2*}$	\checkmark	\checkmark							$\mathcal{O}(mk+n)$	16k	?	2005	[62]
	Local Density		\checkmark			\checkmark		\checkmark		$\mathcal{O}(nK\log n)$	108k	330k	2005	[63]
d)	Edge Betweenness		\checkmark							$\mathcal{O}(m^2n)$	271	1k	2002	[4]
dg(CONGO*	\checkmark								$\mathcal{O}(n\log n)$	30k	116k	2008	[95]
Bri	L-Shell	\checkmark						\checkmark		$\mathcal{O}(n^3)$	77	254	2005	[96]
	Internal-External Degree	\checkmark								$\mathcal{O}(n^2\log n)$	775k	$4.7 \mathrm{M}$	2009	[97]
	Label Propagation			\checkmark		\checkmark		\checkmark		$\mathcal{O}(m+n)$	374k	30M	2007	[109]
_	Node Colouring				\checkmark				\checkmark	$\mathcal{O}(ntk^2)$	2k	?	2007	[110]
ior	Kirchhoff	\checkmark		\checkmark						$\mathcal{O}(m+n)$	115	613	2004	[111]
fus	Communication Dynamic	\checkmark	\checkmark		\checkmark			\checkmark		$\mathcal{O}(mnt)$	160k	530k	2008	[112]
Dif	GuruMine		\checkmark		\checkmark					$\mathcal{O}(TAn^2)$	217k	212k	2008	[8]
	DegreeDiscountIC		\checkmark							$\mathcal{O}(k\log n + m)$	37k	230k	2009	[113]
	MMSB	\checkmark	\checkmark							$\mathcal{O}(nk)$	871	2k	2007	[114]
e.	Walktrap									$\mathcal{O}(mn^2)$	160k	1.8M	2006	[131]
los	DOCS	\checkmark								?	325k	1M	2009	[132]
\cup	Infomap		\checkmark	\checkmark						$\mathcal{O}(m\log^2 n)$	6k	6M	2008	[133]
re	K-Clique	\checkmark								$\mathcal{O}(m^{\frac{\ln m}{10}})$	20k	127k	2005	[3]
tu	S-Plexes Enumeration									$\mathcal{O}(mn)$?	?	2009	[142]
ruc	Bi-Clique	\checkmark							\checkmark	$\mathcal{O}(m^2)$	200k	500k	2008	[141]
\mathbf{St}	EAGLE	\checkmark	\checkmark	\checkmark						$\mathcal{O}(3^{\frac{n}{3}})$	16k	31k	2009	[143]
ık	Link modularity	\checkmark		\checkmark					\checkmark	$\mathcal{O}(2mk\log n)$	20k	127k	2009	[151]
Lir	Link Jaccard [*]	\checkmark		\checkmark					\checkmark	$\mathcal{O}(n\bar{K}^2)$	885k	5.5M	2010	[152]
Q	Hybrid*	\checkmark	\checkmark	\checkmark		\checkmark				$\mathcal{O}(nk\bar{K})$	325k	1.5M	2010	[154]
$ m N_{0}$	Multi-relational Regression			\checkmark			\checkmark			?	?	?	2005	[155]