The Link Prediction Problem for Social Network

Giulio Rossetti

KDDLab, ISTI-CNR, Pisa, Italy giulio.rossetti@isti.cnr.it

WMR 9-05-2012, Pisa

<ロト <四ト <注入 <注下 <注下 <

Index

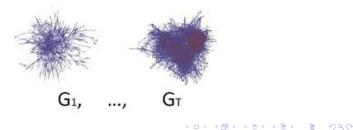
- 1) Motivation & Problem Definition
- 2) Applicative Scenarios
- 3) Methodology
- 4) Unsupervised Link Prediction
- 5) Supervised Link Prediction
- 6) Possible extensions
- 7) Conclusions

Motivation & Problem Definition

- Motivation: Understanding how networks evolve

- Problem definition

Given a snapshot of a network at time t, we seek to accurately predict the edges that will be added to the network during the interval (t, t')



Applicative scenarios

- To suggest interactions or collaborations that haven't yet been utilized within an organization
- To monitor terrorist networks to deduce possible interaction between terrorists (without direct evidence)
- Friendship prediction (Used in Facebook and Linked In)

Real Life Example

Esample: Co-authorship network for scientists

- Scientists who are "close" in the network will have common colleagues & circles → likely to collaborate
- \blacktriangleright Scientists who have never collaborated might in future \rightarrow hard to predict

Goal: make that intuitive notion precise & understand which measures of "proximity" lead to accurate predictions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Methods for Link Prediction

- Take the input graph during a training period $[G_0 = (V, E)]$
- Pick a pair of nodes (u, v)
- Assign a connection weight score(u, v)
- Make a list in descending order of score
- Verify the prediction on the future graph $[G_1 = (V, E_{new})]$

score is a measure of proximity

Any ideas for measures?

Evaluate the results

Given a predictor p is there a way to decide if it is a "good" one?

We need to verify if p outperform the random predictor.

Random Predictor: each edge have the same probability to appear in the future

• **Performance**: $performance(p) = \frac{TP}{TP+FP}$

$$ratio = \frac{performance(p)}{performance(p_{random})} = \frac{performance(p)}{\frac{|E_{new}|}{\frac{|V|*(|V|-1)}{2} - |E_{old}|}}$$

if ratio > 1 the predictor p is meaningful.

Comparing performances of different predictors

Which predictors give the beter performance over the same graph?

	p'	n'
р	ΤP	FN
n	FP	ΤN

Confusion Matrix

Usually we analyze either the performances ratio, ROC courves and Precision Recall courves.

ROC and PR courves

ROC and PR spaces are isomorphic.

Precision Vs. Recall :

• Precision: $PPV = Performance = \frac{TP}{TP+FP}$

• Recall:
$$TPR = \frac{TP}{TP+FN}$$

ROC (Receiver operating characteristic):

• 1-Specificity:
$$FPR = \frac{FP}{FP+TN}$$

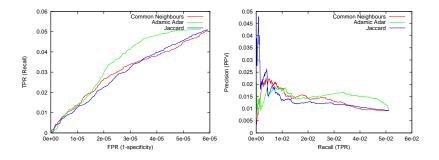
• Recall:
$$TPR = \frac{TP}{TP+FN}$$

Another measure often used is AUC (area under curves).

Web Mining & Social Network Analysis
Methodology
ROC and PR courves

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

ROC and PR courves



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

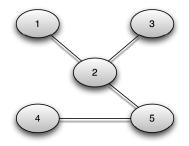
Classes of approaches

Link Prediction could be tackled in two different different ways:

- Unsupervised
- Supervised

Web Mining & Social Network Analysis

Unsupervised Link Prediction



We want to define a set of standard proximity measures unrelated to the particular network

Unsupervised Link Prediction

Unsupervised measurements could rely on different structural property:

- Neigborhood measures
 - Common Neighbors, Adamic Adar, Jaccard, Preferential Attachment
- Path-based measures
 - Graph distance, Katz
- Ranking
 - Sim Rank, Hitting time, Page Rank

Neighborhood Measures

"How many friends we have to share in order to become friends?"

Common Neighbors: the more friends we share, the more likely that we will become friends

$$score(u, v) = |\Gamma(u) \cap \Gamma(v)|$$

Jaccard: the more similar our friends circles are, the more likely that we will become friends

$$score(u, v) = \frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}$$

Neighborhood Measures

"How many friends we have to share in order to become friends?"

Adamic Adar: the more *selective* our mutual friends are, the more likely that we will become friends

$$score(u, v) = \sum_{z \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log(|\Gamma(z)|)}$$

Preferential Attachment: more friends we have, the more likely that we will become friends

$$score(u, v) = |\Gamma(u)| * |\Gamma(v)|$$

Path-based Measures

"How distant we are?"

Graph Distance: (negated) length of shortest path between u & v

Katz_{β}: weighted sum over all the paths between u & v

 $score(u, v) = \sum_{l=1}^{\infty} \beta^{l} \left| paths_{u,v}^{\langle l \rangle} \right|$ where: $paths_{u,v}^{\langle l \rangle} = \{ paths of length exactly l from u to v \}$

・ロト ・ 通 ト ・ 目 ト ・ 目 ・ の へ ()・

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

SimRank

"Two nodes are similar to the extent that they are joined by similar neighbors"

$$egin{aligned} \mathsf{similarity}(u,v) &= \gamma * rac{\sum_{a \in \Gamma(u)} \sum_{n \in \Gamma(v)} \mathsf{similarity}(a,b)}{|\Gamma(u)| * |\Gamma(v)|} \ \mathsf{score}(u,v) &= \mathsf{similarity}(u,v) \end{aligned}$$

Results & Limits

Results

- No single clear winner
- ► Many predictors outperform the random predictor ⇒ there is useful information in the network topology

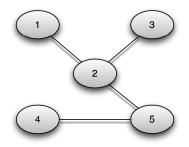
Limits

- Different kinds of network are described by general closed formulae
- Adamic Adar & Katz (the best unsupervised predictors) have an overall performance between 10% and 16%.

Web Mining & Social Network Analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Supervised Link Prediction



We want to extract knowledge from the network in order to make predictions

Supervised Link Prediction: Classification

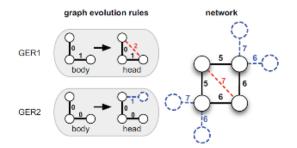
The process is now splitted in 2 parts:

- 1) Learning a model
- 2) Use the model for the prediction

The natural way: build a Classificator over a set of attributes.

Supervised Link Prediction: Evolutive Pattern

Evolution rules could be extracted from the network in order to predict recurrent pattern. Example: **GERM**



Web Mining & Social Network Analysis
Supervised Link Prediction
Results & Limits

Results & Limits

Results

Higer performances wrt the unsupervised approaches

Limits

 The two-phase predictive process is slower than the unsupervised ones.

Possible extensions

Several kinds of extensions of the seen models are possible:

- Temporal & evolutive analysis
- Link strength
- Multidimensionality
- Semantic enrichment (geographic information...)

• • • •

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conclusions

Predict the evolution of a network is not an easy task because:

- Networks are containers of weak links
- False Positive issue
- Simple approaches are not so good
- Complex approaches have high costs