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Motivation & Problem Definition

Motivation & Problem Definition

- Motivation: Understanding how networks evolve

- Problem definition

Given a snapshot of a network at time t, we seek to
accurately predict the edges that will be added to the network
during the interval (t, t

′
)
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Applicative Scenarios

Applicative scenarios

I To suggest interactions or collaborations that haven’t yet been
utilized within an organization

I To monitor terrorist networks - to deduce possible interaction
between terrorists (without direct evidence)

I Friendship prediction (Used in Facebook and Linked In)
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Applicative Scenarios

Real Life Example

Esample: Co-authorship network for scientists

I Scientists who are “close” in the network will have common
colleagues & circles → likely to collaborate

I Scientists who have never collaborated might in future →
hard to predict

Goal: make that intuitive notion precise & understand which
measures of “proximity” lead to accurate predictions
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Methods for Link Prediction

I Take the input graph during a training period [G0 = (V ,E )]

I Pick a pair of nodes (u, v)

I Assign a connection weight score(u, v)

I Make a list in descending order of score

I Verify the prediction on the future graph [G1 = (V ,Enew )]

score is a measure of proximity

Any ideas for measures?
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Evaluate the results

Evaluate the results

Given a predictor p is there a way to decide if it is a ”good” one?

We need to verify if p outperform the random predictor.

I Random Predictor: each edge have the same probability to
appear in the future

I Performance: performance(p) = TP
TP+FP

ratio = performance(p)
performance(prandom) = performance(p)

|Enew |
|V |∗(|V |−1)

2 −|Eold |

if ratio > 1 the predictor p is meaningful.
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Comparing performances of different predictors

Comparing performances of different predictors

Which predictors give the beter performance over the same graph?

p’ n’

p TP FN

n FP TN

Confusion Matrix

Usually we analyze either the performances ratio, ROC courves and
Precision Recall courves.
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ROC and PR courves

ROC and PR courves

ROC and PR spaces are isomorphic.

Precision Vs. Recall :

I Precision: PPV = Performance = TP
TP+FP

I Recall: TPR = TP
TP+FN

ROC (Receiver operating characteristic):

I 1-Specificity: FPR = FP
FP+TN

I Recall: TPR = TP
TP+FN

Another measure often used is AUC (area under curves).
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ROC and PR courves
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Classes of approaches

Classes of approaches

Link Prediction could be tackled in two different different ways:

I Unsupervised

I Supervised
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Unsupervised Link Prediction
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We want to define a set of standard proximity measures unrelated
to the particular network
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Unsupervised Link Prediction

Unsupervised measurements could rely on different structural
property:

I Neigborhood measures

- Common Neighbors, Adamic Adar, Jaccard, Preferential
Attachment

I Path-based measures

- Graph distance, Katz

I Ranking
- Sim Rank, Hitting time, Page Rank
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Neighborhood Measures

Neighborhood Measures

”How many friends we have to share in order to become friends?”

Common Neighbors: the more friends we share, the more likely
that we will become friends

score(u, v) = |Γ(u) ∩ Γ(v)|

Jaccard: the more similar our friends circles are, the more likely
that we will become friends

score(u, v) = |Γ(u)∩Γ(v)|
|Γ(u)∪Γ(v)|
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Neighborhood Measures

Neighborhood Measures

”How many friends we have to share in order to become friends?”

Adamic Adar: the more selective our mutual friends are, the more
likely that we will become friends

score(u, v) =
∑

z∈Γ(u)∩Γ(v)
1

log(|Γ(z)|)

Preferential Attachment: more friends we have, the more likely
that we will become friends

score(u, v) = |Γ(u)| ∗ |Γ(v)|
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Path-based Measures

Path-based Measures

”How distant we are?”

Graph Distance: (negated) length of shortest path between u & v

Katzβ: weighted sum over all the paths between u & v

score(u, v) =
∑∞

l=1 β
l
∣∣∣paths〈l〉u,v ∣∣∣

where: paths
〈l〉
u,v ={paths of length exactly l from u to v}
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Ranking

SimRank

”Two nodes are similar to the extent that they are joined by similar
neighbors”

similarity(u, v) = γ ∗
∑

a∈Γ(u)

∑
n∈Γ(v) similarity(a,b)

|Γ(u)|∗|Γ(v)|

score(u, v) = similarity(u, v)
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Results & Limits

Results & Limits

Results

I No single clear winner

I Many predictors outperform the random predictor ⇒ there is
useful information in the network topology

Limits

I Different kinds of network are described by general closed
formulae

I Adamic Adar & Katz (the best unsupervised predictors) have
an overall performance between 10% and 16%.
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Supervised Link Prediction
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We want to extract knowledge from the network in order to make
predictions



Web Mining & Social Network Analysis

Supervised Link Prediction

Supervised Link Prediction: Classification

The process is now splitted in 2 parts:

1) Learning a model

2) Use the model for the prediction

The natural way: build a Classificator over a set of attributes.
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Supervised Link Prediction: Evolutive Pattern

Evolution rules could be extracted from the network in order to
predict recurrent pattern. Example: GERM
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Results & Limits

Results & Limits

Results

I Higer performances wrt the unsupervised approaches

Limits

I The two-phase predictive process is slower than the
unsupervised ones.
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Possible extensions

Several kinds of extensions of the seen models are possible:

I Temporal & evolutive analysis

I Link strength

I Multidimensionality

I Semantic enrichment (geographic information. . . )

I . . .
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Conclusions

Predict the evolution of a network is not an easy task because:

I Networks are containers of weak links

I False Positive issue

I Simple approaches are not so good

I Complex approaches have high costs
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