
October 28, 2010 Data Mining: Concepts and Techniques 1 

Web Mining ed Analisi 
delle Reti Sociali 

Proprietà delle Reti – Richiami di elementi di 
statistica 

Dino Pedreschi 

Dipartimento di Informatica 

Università di Pisa 

www.di.unipi.it/~pedre 



October 28, 2010 Data Mining: Concepts and Techniques 2 

“Natural” Networks and Universality 

  Consider many kinds of networks: 
  social, technological, business, economic, content,… 

  These networks tend to share certain informal properties: 
  large scale; continual growth 
  distributed, organic growth: vertices “decide” who to link to 
  interaction restricted to links 
  mixture of local and long-distance connections 
  abstract notions of distance: geographical, content, social,… 

  Do natural networks share more quantitative universals? 
  What would these “universals” be? 
  How can we make them precise and measure them? 
  How can we explain their universality? 
  This is the domain of social network theory 
  Sometimes also referred to as link analysis 
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Some Interesting Quantities  

  Connected components: 
  how many, and how large? 

  Network diameter: 
  maximum (worst-case) or average? 
  exclude infinite distances? (disconnected components) 
  the small-world phenomenon 

  Clustering: 
  to what extent that links tend to cluster “locally”? 
  what is the balance between local and long-distance connections? 
  what roles do the two types of links play? 

  Degree distribution: 
  what is the typical degree in the network? 
  what is the overall distribution?




The small-world effect 

October 28, 2010 Data Mining: Concepts and Techniques 4 



Transitivity – the clustering coefficient 
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Transitivity – the clustering coefficient 
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Transitivity – the clustering coefficient 



Degree distribution 

  The degree of a vertex in a network is the 
number of edges incident on (i.e., connected to) 
that vertex.  

  pk = the fraction of vertices in the network that 
have degree k.  

  Equivalently, pk = the probability that a vertex 
chosen uniformly at random has degree k. 

  A plot of pk for any given network can be formed 
by a histogram of the degrees of vertices.  

  This histogram is the degree distribution for 
the network 
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Degree distributions for six networks 
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Actor Connectivity (power law) 

Nodes: actors     
Links: cast jointly 

N = 212,250 actors     
〈k〉 = 28.78 

P(k) ~k-γ 

Days of Thunder (1990) 
Far and Away     (1992)  
Eyes Wide Shut  (1999) 

γ=2.3 
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Science Citation Index (power law) 

(γ = 3) 

Nodes: papers 
Links: citations 

(S. Redner, 1998) 

P(k) ~k-γ 

2212 

      25 

1736 PRL papers (1988) 

Witten-Sander 
PRL 1981 
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Sex-Web (power law) 

Nodes: people (Females; Males) 
Links:  sexual relationships 

Liljeros et al. Nature 2001 

4781 Swedes; 18-74;  
59% response rate. 



Basic statisics for some published networks 
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A “Canonical” Natural Network has… 

  Few connected components: 
  often only 1 or a small number, indep. of network size 

  Small diameter: 
  often a constant independent of network size (like 6) 
  or perhaps growing only logarithmically with network size 

or even shrink? 
  typically exclude infinite distances 

  A high degree of clustering: 
  considerably more so than for a random network 
  in tension with small diameter 

  A heavy-tailed degree distribution: 
  a small but reliable number of high-degree vertices 
  often of power law form
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Probabilistic Models of Networks 

  All of the network generation models we will study are 
probabilistic or statistical in nature 

  They can generate networks of any size 
  They often have various parameters that can be set: 

  size of network generated 
  average degree of a vertex 
  fraction of long-distance connections 

  The models generate a distribution over networks 
  Statements are always statistical in nature: 

  with high probability, diameter is small 
  on average, degree distribution has heavy tail 

  Thus, we’re going to need some basic statistics and 
probability theory
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Social Network Analysis 

  Social Network Introduction 

  Statistics and Probability Theory 

  Models of Social Network Generation 

  Networks in Biological System 

  Mining on Social Network 

  Summary 
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Probability and Random Variables 
  A random variable X is simply a variable that probabilistically assumes 

values in some set 
  set of possible values sometimes called the sample space S of X 
  sample space may be small and simple or large and complex 

  S = {Heads, Tails}, X is outcome of a coin flip 
  S = {0,1,…,U.S. population size}, X  is number voting democratic 
  S = all networks of size N, X  is generated by preferential attachment 

  Behavior of X determined by its distribution (or density) 
  for each value x in S, specify Pr[X = x] 
  these probabilities sum to exactly 1 (mutually exclusive outcomes) 
  complex sample spaces (such as large networks): 

  distribution often defined implicitly by simpler components 
  might specify the probability that each edge appears independently 
  this induces a probability distribution over networks 
  may be difficult to compute induced distribution
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Some Basic Notions and Laws 

  Independence: 
  let X and Y be random variables 
  independence: for any x and y, Pr[X = x & Y = y] = Pr[X=x]Pr[Y=y] 
  intuition: value of X does not influence value of Y, vice-versa 
  dependence: 

  e.g. X, Y coin flips, but Y is always opposite of X 
  Expected (mean) value of X: 

  only makes sense for numeric random variables 
  “average” value of X according to its distribution 

  formally, E[X] = Σ (Pr[X = x] X), sum is over all x in S 
  often denoted by µ 
  always true: E[X + Y] = E[X] + E[Y] 
  true only for independent random variables: E[XY] = E[X]E[Y] 

  Variance of X: 
  Var(X) = E[(X – µ)^2]; often denoted by σ^2 
  standard deviation is sqrt(Var(X)) = σ 

  Union bound: 
  for any X, Y, Pr[X=x & Y=y] <= Pr[X=x] + Pr[Y=y] 
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Convergence to Expectations 

  Let X1, X2,…, Xn be:  
  independent random variables  
  with the same distribution Pr[X=x] 
  expectation µ = E[X] and variance σ2 

  independent and identically distributed (i.i.d.) 
  essentially n repeated “trials” of the same experiment 
  natural to examine r.v. Z = (1/n) Σ Xi, where sum is over i=1,…,n 
  example: number of heads in a sequence of coin flips 
  example: degree of a vertex in the random graph model 
  E[Z] = E[X]; what can we say about the distribution of Z? 

  Central Limit Theorem: 
  as n becomes large, Z becomes normally distributed 

  with expectation µ and variance σ2/n 
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The Normal Distribution 

  The normal or Gaussian density: 
  applies to continuous, real-valued random variables 
  characterized by mean (average) m and standard deviation 

s 
  density at x is defined as  

  (1/(σ sqrt(2π))) exp(-(x-µ)2/2σ2) 
  special case µ = 0, σ = 1: a exp(-x2/b) for some constants a,b > 0 

  peaks at x = µ, then dies off exponentially rapidly 
  the classic “bell-shaped curve” 

  exam scores, human body temperature,  

  remarks: 
  can control mean and standard deviation independently 
  can make as “broad” as we like, but always have finite variance
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The Normal Distribution 
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The Binomial Distribution 

  coin with Pr[heads] = p, flip n times 

  probability of getting exactly k heads: 

  choose(n,k) pk(1-p)n-k 

  for large n and p fixed: 
  approximated well by a normal with  

µ = np, σ = sqrt(np(1-p)) 

   σ/µ  0 as n grows 

  leads to strong large deviation bounds 
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The Binomial Distribution 

www.professionalgambler.com/ binomial.html 
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The Poisson Distribution 

  like binomial, applies to variables taken on integer values > 0  

  often used to model counts of events 

  number of phone calls placed in a given time period 

  number of times a neuron fires in a given time period 

  single free parameter λ 

  probability of exactly x events: 

  exp(-λ) λx/x! 

  mean and variance are both λ 

  binomial distribution with n large, p = λ/n (λ fixed) 

  converges to Poisson with mean λ	
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The Poisson Distribution 

single photoelectron distribution 
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Heavy-tailed Distributions 

  Pareto or power law distributions:  
  for variables assuming integer values > 0 
  probability of value x ̃ 1/x^a 
  typically 0 < a < 2; smaller a gives heavier tail 
  sometimes also referred to as being scale-free 

  For binomial, normal, and Poisson distributions the tail 
probabilities approach 0 exponentially fast  

  Inverse polynomial decay vs. inverse exponential decay 
  What kind of phenomena does this distribution model? 
  What kind of process would generate it? 
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Heavy-Tailed Distributions 
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Distributions vs. Data 

  All these distributions are idealized models 
  In practice, we do not see distributions, but data 
  Thus, there will be some largest value we observe 
  Also, can be difficult to “eyeball” data and choose model 
  So how do we distinguish between Poisson, power law, etc? 
  Typical procedure: 

  might restrict our attention to a range of values of interest 
  accumulate counts of observed data into equal-sized bins 
  look at counts on a log-log plot 
  note that 

  power law:  
  log(Pr[X = x]) = log(1/xα) = -α log(x)  
  linear, slope –α 

  Normal:  
  log(Pr[X = x]) = log(a exp(-x2/b)) = log(a) – x2/b 
  non-linear, concave near mean  

  Poisson:  
  log(Pr[X = x]) = log(exp(-λ) λx/x!)  
  also non-linear 
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Zipf’s Law 
  Look at the frequency of English words: 

  “the” is the most common, followed by “of”, “to”, etc. 
  claim: frequency of the n-th most common ~ 1/n (power 

law, α = 1) 
  General theme: 

  rank events by their frequency of occurrence 
  resulting distribution often is a power law! 

  Other examples: 
  North America city sizes 
  personal income 
  file sizes 
  genus sizes (number of species) 

  People seem to dither over exact form of these distributions 
(e.g. value of α), but not heavy tails
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Linear scales on both axes  Logarithmic scales on both axes  

The same data plotted on linear and logarithmic scales. 
Both plots show a Zipf distribution with 300 datapoints  

Zipf’s Law 


