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“Natural” Networks and Universality 

  Consider many kinds of networks: 
  social, technological, business, economic, content,… 

  These networks tend to share certain informal properties: 
  large scale; continual growth 
  distributed, organic growth: vertices “decide” who to link to 
  interaction restricted to links 
  mixture of local and long-distance connections 
  abstract notions of distance: geographical, content, social,… 

  Do natural networks share more quantitative universals? 
  What would these “universals” be? 
  How can we make them precise and measure them? 
  How can we explain their universality? 
  This is the domain of social network theory 
  Sometimes also referred to as link analysis 
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Some Interesting Quantities  

  Connected components: 
  how many, and how large? 

  Network diameter: 
  maximum (worst-case) or average? 
  exclude infinite distances? (disconnected components) 
  the small-world phenomenon 

  Clustering: 
  to what extent that links tend to cluster “locally”? 
  what is the balance between local and long-distance connections? 
  what roles do the two types of links play? 

  Degree distribution: 
  what is the typical degree in the network? 
  what is the overall distribution?



The small-world effect 
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Transitivity – the clustering coefficient 
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Transitivity – the clustering coefficient 
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Transitivity – the clustering coefficient 



Degree distribution 

  The degree of a vertex in a network is the 
number of edges incident on (i.e., connected to) 
that vertex.  

  pk = the fraction of vertices in the network that 
have degree k.  

  Equivalently, pk = the probability that a vertex 
chosen uniformly at random has degree k. 

  A plot of pk for any given network can be formed 
by a histogram of the degrees of vertices.  

  This histogram is the degree distribution for 
the network 
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Degree distributions for six networks 
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Actor Connectivity (power law) 

Nodes: actors     
Links: cast jointly 

N = 212,250 actors     
〈k〉 = 28.78 

P(k) ~k-γ 

Days of Thunder (1990) 
Far and Away     (1992)  
Eyes Wide Shut  (1999) 

γ=2.3 
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Science Citation Index (power law) 

(γ = 3) 

Nodes: papers 
Links: citations 

(S. Redner, 1998) 

P(k) ~k-γ 

2212 

      25 

1736 PRL papers (1988) 

Witten-Sander 
PRL 1981 
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Sex-Web (power law) 

Nodes: people (Females; Males) 
Links:  sexual relationships 

Liljeros et al. Nature 2001 

4781 Swedes; 18-74;  
59% response rate. 



Basic statisics for some published networks 

October 28, 2010 Data Mining: Concepts and Techniques 13 



October 28, 2010 Data Mining: Concepts and Techniques 14 

A “Canonical” Natural Network has… 

  Few connected components: 
  often only 1 or a small number, indep. of network size 

  Small diameter: 
  often a constant independent of network size (like 6) 
  or perhaps growing only logarithmically with network size 

or even shrink? 
  typically exclude infinite distances 

  A high degree of clustering: 
  considerably more so than for a random network 
  in tension with small diameter 

  A heavy-tailed degree distribution: 
  a small but reliable number of high-degree vertices 
  often of power law form
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Probabilistic Models of Networks 

  All of the network generation models we will study are 
probabilistic or statistical in nature 

  They can generate networks of any size 
  They often have various parameters that can be set: 

  size of network generated 
  average degree of a vertex 
  fraction of long-distance connections 

  The models generate a distribution over networks 
  Statements are always statistical in nature: 

  with high probability, diameter is small 
  on average, degree distribution has heavy tail 

  Thus, we’re going to need some basic statistics and 
probability theory
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Social Network Analysis 

  Social Network Introduction 

  Statistics and Probability Theory 

  Models of Social Network Generation 

  Networks in Biological System 

  Mining on Social Network 

  Summary 
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Probability and Random Variables 
  A random variable X is simply a variable that probabilistically assumes 

values in some set 
  set of possible values sometimes called the sample space S of X 
  sample space may be small and simple or large and complex 

  S = {Heads, Tails}, X is outcome of a coin flip 
  S = {0,1,…,U.S. population size}, X  is number voting democratic 
  S = all networks of size N, X  is generated by preferential attachment 

  Behavior of X determined by its distribution (or density) 
  for each value x in S, specify Pr[X = x] 
  these probabilities sum to exactly 1 (mutually exclusive outcomes) 
  complex sample spaces (such as large networks): 

  distribution often defined implicitly by simpler components 
  might specify the probability that each edge appears independently 
  this induces a probability distribution over networks 
  may be difficult to compute induced distribution
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Some Basic Notions and Laws 

  Independence: 
  let X and Y be random variables 
  independence: for any x and y, Pr[X = x & Y = y] = Pr[X=x]Pr[Y=y] 
  intuition: value of X does not influence value of Y, vice-versa 
  dependence: 

  e.g. X, Y coin flips, but Y is always opposite of X 
  Expected (mean) value of X: 

  only makes sense for numeric random variables 
  “average” value of X according to its distribution 

  formally, E[X] = Σ (Pr[X = x] X), sum is over all x in S 
  often denoted by µ 
  always true: E[X + Y] = E[X] + E[Y] 
  true only for independent random variables: E[XY] = E[X]E[Y] 

  Variance of X: 
  Var(X) = E[(X – µ)^2]; often denoted by σ^2 
  standard deviation is sqrt(Var(X)) = σ 

  Union bound: 
  for any X, Y, Pr[X=x & Y=y] <= Pr[X=x] + Pr[Y=y] 



October 28, 2010 Data Mining: Concepts and Techniques 19 

Convergence to Expectations 

  Let X1, X2,…, Xn be:  
  independent random variables  
  with the same distribution Pr[X=x] 
  expectation µ = E[X] and variance σ2 

  independent and identically distributed (i.i.d.) 
  essentially n repeated “trials” of the same experiment 
  natural to examine r.v. Z = (1/n) Σ Xi, where sum is over i=1,…,n 
  example: number of heads in a sequence of coin flips 
  example: degree of a vertex in the random graph model 
  E[Z] = E[X]; what can we say about the distribution of Z? 

  Central Limit Theorem: 
  as n becomes large, Z becomes normally distributed 

  with expectation µ and variance σ2/n 
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The Normal Distribution 

  The normal or Gaussian density: 
  applies to continuous, real-valued random variables 
  characterized by mean (average) m and standard deviation 

s 
  density at x is defined as  

  (1/(σ sqrt(2π))) exp(-(x-µ)2/2σ2) 
  special case µ = 0, σ = 1: a exp(-x2/b) for some constants a,b > 0 

  peaks at x = µ, then dies off exponentially rapidly 
  the classic “bell-shaped curve” 

  exam scores, human body temperature,  

  remarks: 
  can control mean and standard deviation independently 
  can make as “broad” as we like, but always have finite variance
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The Normal Distribution 
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The Binomial Distribution 

  coin with Pr[heads] = p, flip n times 

  probability of getting exactly k heads: 

  choose(n,k) pk(1-p)n-k 

  for large n and p fixed: 
  approximated well by a normal with  

µ = np, σ = sqrt(np(1-p)) 

   σ/µ  0 as n grows 

  leads to strong large deviation bounds 
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The Binomial Distribution 

www.professionalgambler.com/ binomial.html 
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The Poisson Distribution 

  like binomial, applies to variables taken on integer values > 0  

  often used to model counts of events 

  number of phone calls placed in a given time period 

  number of times a neuron fires in a given time period 

  single free parameter λ 

  probability of exactly x events: 

  exp(-λ) λx/x! 

  mean and variance are both λ 

  binomial distribution with n large, p = λ/n (λ fixed) 

  converges to Poisson with mean λ	
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The Poisson Distribution 

single photoelectron distribution 
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Heavy-tailed Distributions 

  Pareto or power law distributions:  
  for variables assuming integer values > 0 
  probability of value x ̃ 1/x^a 
  typically 0 < a < 2; smaller a gives heavier tail 
  sometimes also referred to as being scale-free 

  For binomial, normal, and Poisson distributions the tail 
probabilities approach 0 exponentially fast  

  Inverse polynomial decay vs. inverse exponential decay 
  What kind of phenomena does this distribution model? 
  What kind of process would generate it? 
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Heavy-Tailed Distributions 
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Distributions vs. Data 

  All these distributions are idealized models 
  In practice, we do not see distributions, but data 
  Thus, there will be some largest value we observe 
  Also, can be difficult to “eyeball” data and choose model 
  So how do we distinguish between Poisson, power law, etc? 
  Typical procedure: 

  might restrict our attention to a range of values of interest 
  accumulate counts of observed data into equal-sized bins 
  look at counts on a log-log plot 
  note that 

  power law:  
  log(Pr[X = x]) = log(1/xα) = -α log(x)  
  linear, slope –α 

  Normal:  
  log(Pr[X = x]) = log(a exp(-x2/b)) = log(a) – x2/b 
  non-linear, concave near mean  

  Poisson:  
  log(Pr[X = x]) = log(exp(-λ) λx/x!)  
  also non-linear 
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Zipf’s Law 
  Look at the frequency of English words: 

  “the” is the most common, followed by “of”, “to”, etc. 
  claim: frequency of the n-th most common ~ 1/n (power 

law, α = 1) 
  General theme: 

  rank events by their frequency of occurrence 
  resulting distribution often is a power law! 

  Other examples: 
  North America city sizes 
  personal income 
  file sizes 
  genus sizes (number of species) 

  People seem to dither over exact form of these distributions 
(e.g. value of α), but not heavy tails
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Linear scales on both axes  Logarithmic scales on both axes  

The same data plotted on linear and logarithmic scales. 
Both plots show a Zipf distribution with 300 datapoints  

Zipf’s Law 


