Strumenti Utente

Strumenti Sito


magistraleinformatica:dmi:dm-inf_2022-2023

<html> <!– Google Analytics –> <script type=“text/javascript” charset=“utf-8”> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-34685760-1', 'auto', 'personalTracker', {'allowLinker': true}); ga('personalTracker.require', 'linker'); ga('personalTracker.linker:autoLink', ['pages.di.unipi.it', 'enforce.di.unipi.it', 'didawiki.di.unipi.it'] ); ga('personalTracker.require', 'displayfeatures'); ga('personalTracker.send', 'pageview', 'courses/dminf/'); setTimeout(“ga('send','event','adjusted bounce rate','30 seconds')”,30000); </script> <!– End Google Analytics –> <!– Global site tag (gtag.js) - Google Analytics –> <script async src=“https://www.googletagmanager.com/gtag/js?id=G-LPWY0VLB5W”></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-LPWY0VLB5W'); </script> <!– Global site tag (gtag.js) - Google Analytics –> <script async src=“https://www.googletagmanager.com/gtag/js?id=G-LPWY0VLB5W”></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-LPWY0VLB5W'); </script> <!– Capture clicks –> <script> jQuery(document).ready(function(){ jQuery('a[href$=“.pdf”]').click(function() { var fname = this.href.split('/').pop(); ga('personalTracker.send', 'event', 'DMINF', 'PDFs', fname); }); jQuery('a[href$=“.r”]').click(function() { var fname = this.href.split('/').pop(); ga('personalTracker.send', 'event', 'DMINF', 'Rs', fname); }); jQuery('a[href$=“.zip”]').click(function() { var fname = this.href.split('/').pop(); ga('personalTracker.send', 'event', 'DMINF', 'ZIPs', fname); }); jQuery('a[href$=“.mp4”]').click(function() { var fname = this.href.split('/').pop(); ga('personalTracker.send', 'event', 'DMINF', 'Videos', fname); }); jQuery('a[href$=“.flv”]').click(function() { var fname = this.href.split('/').pop(); ga('personalTracker.send', 'event', 'DMINF', 'Videos', fname); }); }); </script> </html> ====== Data Mining (309AA) - 9 CFU A.Y. 2022/2023 ====== Instructor: * Anna Monreale * KDDLab, Università di Pisa * anna [dot] monreale [at] unipi [dot] it Teaching Assistant: * Francesca Naretto * KDDLab, SNS, Pisa * francesca [dot] naretto [at] sns [dot] it * * Lorenzo Mannocci * University of Pisa * lorenzo [dot] mannocci [at] phd [dot] unipi [dot] it ====== News ====== * [28.10.2022] The lectures on 16 and 17 November will be suppressed. * [09.09.2022] he lectures will be only in presence and will NOT be live-streamed, but recordings of the lecture or of the previous years will be made available here for non-attending students. ====== Learning Goals ====== * Fundamental concepts of data knowledge and discovery. * Data understanding * Data preparation * Clustering * Classification * Pattern Mining and Association Rules * Outlier Detection * Time Series Analysis * Sequential Pattern Mining * Ethical Issues ====== Hours and Rooms ====== Classes ^ Day of Week ^ Hour ^ Room ^ | Wednesday | 09:00 - 11:00 | Room E | | Thursday | 11:00 - 13:00 | Room C | | Friday | 09:00 - 11:00 | Room C | Office hours - Ricevimento: Anna Monreale: Tuesday: 11:00-13:00 by online using Teams or at the Department of Computer Science, room 374/E (Please ask an appointment by email). Francesca Naretto: TDB A Teams Channel will be used ONLY to post news, Q&A, and other stuff related to the course. The lectures will be only in presence and will NOT be live-streamed, but recordings of the lecture or of the previous years will be made available here for non-attending students. ====== Learning Material – Materiale didattico ====== ===== Textbook – Libro di Testo ===== * Pang-Ning Tan, Michael Steinbach, Vipin Kumar. Introduction to Data Mining. Addison Wesley, ISBN 0-321-32136-7, 2006 * http://www-users.cs.umn.edu/~kumar/dmbook/index.php * Chapters 4,6 and 8 are also available at the publisher's Web site. * Berthold, M.R., Borgelt, C., Höppner, F., Klawonn, F. GUIDE TO INTELLIGENT DATA ANALYSIS. Springer Verlag, 1st Edition., 2010. ISBN 978-1-84882-259-7 * Laura Igual et al. Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications. 1st ed. 2017 Edition. * Jake VanderPlas. Python Data Science Handbook: Essential Tools for Working with Data. 1st Edition. * For Python Notions: Very basic notions on Python ===== Slides ===== * The slides used in the course will be inserted in the calendar after each class. Most of them are part of the slides provided by the textbook's authors Slides per "Introduction to Data Mining". ===== Software===== * Python - Anaconda (at least 3.7 version!!!): Anaconda is the leading open data science platform powered by Python. Download page (the following libraries are already included) * Scikit-learn: python library with tools for data mining and data analysis Documentation page * Pandas: pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. Documentation page ====== Class Calendar (2022/2023) ====== ===== First Semester ===== ^ ^ Day ^ Topic ^ Learning material ^ References ^ Video Lectures ^ |1. | 15.09 11:00‑13:00 | Overview. Introduction to KDD |1-overview.pdf 1-intro-dm.pdf|Chap. 1 Kumar Book | Video 1: Course Overview;Video 2: Introduction DM (the recording of the Introduction had some audio issue so I published the part of the lecture of the a.y. 2021/22)| |2. | 16.09 09:00-11:00 | Data Understanding | 2-data_understanding.pdf |Chap.2 Kumar Book and additioanl resource of Kumar Book:Exploring Data If you have the first ed. of KUMAR this is the Chap 3 | Video 1: Data Understanding - Part 1; Video 2: Data Understanding - Part 2 | |3. | 21.09 09:00-11:00 | Data Understanding & Data Preparation | 3-data_preparation.pdf |Chap.2 Kumar Book and additioanl resource of Kumar Book:Exploring Data If you have the first ed. of KUMAR this is the Chap 3 | Video: Data Understanding & Data Preparation | |4. | 22.09 11:00-13:00 | Data Preparation + Data Similarities.|4-data_similarity.pdf | Data Similarity is in Chap. 2 |Video 1: Data Preparation + Data Similarities - Part 1; Video 2: Data Preparation + Data Similarities - Part 2 | |5. | 23.09 09:00-11:00 | Introduction to Clustering. Center-based clustering: kmeans| 5-basic_cluster_analysis-intro.pdf 6.1-basic_cluster_analysis-kmeans.pdf | Clustering is in Chap. 7 |Video 1: Introduction to Clustering + K-means - Part 1;Video 2: Introduction to Clustering + K-means - Part 2] | |6. | 28.09 09:00-11:00 | Python Lab: Data Understanding & Data Preparation | Notebook DU tips | | Video 1: Python Lab: DU - Part1;Video 2: Python Lab: DU - Part2| |7. | 29.09 11:00-13:00 | Hierarchical clustering | 7.basic_cluster_analysis-hierarchical.pdf| | Video: Project Description + Hierarchical Clustering| | | 30.09 09:00-11:00 | Lecture Canceled | | | | |8. | 05.10 09:00-11:00 | Density based clustering. Clustering validity. | 8.basic_cluster_analysis-dbscan-validity.pdf | Chap. 7 Kumar Book | | |9.| 06.10 11:00-13:00 | Center-based clustering: Bisecting K-means, Xmeans, EM | 6.2-basic_cluster_analysis-kmeans-variants.pdf | Chap. 7 Kumar Book, clusteringmixturemodels.pdf xmeans.pdf| Video 1: Center-based clustering - Bisecting K-means, Xmeans, EM ; Video 2: Clustering Lab. | |10.| 07.10 09:00-11:00 |Python Lab - Clustering| Notebook CLustering Tips | |Video: Clustering Lab. - Part2 | |11.| 12.10 09:00-11:00 |Classification Problem. Decision Trees| 9.chap3_basic_classification-2022.pdf | Chap. 3 Kumar Book | Video Lecture - Part1; Video Lecture - Part 2| |12.| 13.10 11:00-13:00 |Decision Trees & Classifier Evaluation| same slides previous lecture | Chap. 3 Kumar Book | Video Lecture - Part 1 Video lecture - Part 2| |13.| 14.10 09:00-11:00 |Classifier Evaluation| same slides previous lecture | Chap. 3 Kumar Book |Video Lecture | |14.| 19.10 09:00-11:00 |Rule based Classifiers | 10-rule-based-clussifiers-2022.pdf10-knn-2022.pdf | Rule based classifiers: Chap. 5.1, KNN: Chap. 4.2 - Kumar Book | Video 1: Rule based classifiersVideo 2: KNN | |15.| 20.10 11:00-13:00 |DT - simulation of the learning algorithm | DT Exercise| | Video 1: DT-EX; Video 2: DT-EX| |16.| 21.10 09:00-11:00 |Naive Bayesian Classifier. SVM. Ensemble Classifiers | 11_2022-naive_bayes.pdf 14_svm_2022.pdf 13_ensemble_2022.pdf| Chap. 4 - Kumar Book |Video1; Video2| |17.| 26.10 09:00-11:00 |Ensemble Classifiers + NN Classifiers + Project Discussion| same slides of the previous lecture | Chap. 4 - Kumar Book | Video1| |18.| 27.10 11:00-13:00 | NN Classifiers + Python Lab: Classification| 15_neural_networks_2021.pdf Classificaton Notebook Adult Dataset | | Video1; Video2| |19.| 28.10 09:00-11:00 |Python Lab: Classification | Classificaton Notebook (same as previous lecture) | | Video | |20.| 02.11 09:00-11:00 |Python Lab: NN & Imbalanced Classification | classificationpython2.zip | | Unfortunately Video is not available for technical issues | |21.| 03.11 11:00-13:00 | Association Rule Mining| 17_association_analysis2021.pdf | Chap. 5 - Kumar Book | Video | |22.| 04.11 09:00-11:00 | FP-Growth - Sequential Pattern Mining | 17_2021-fp-growth.pdf 18_sequential_patterns_2021.pdf|Chap. 5 & Chap. 6 - Kumar Book | Video1;Video2 | |23.| 09.11 09:00-11:00 | Sequential Pattern Mining. Intro to Time Series|Slides on SPM (see previous lecture) | | Video1;Video2 | |24.| 10.11 11:00-13:00 | Time Series Similarities| 22_time_series_similarity_2022.pdf | Overview on Time Series | Video | |25.| 11.11 09:00-11:00 | Time Series Transformations - Clustering - Classification| Slides on transformations (previous lecture) 23_time_series_motif-2022_2.pdf| |Video| |26.| 18.11 09:00-11:00 | Shapelets & Motif. Lab: Association Rules| Slides on shapelets & motif (previous lecture) arm-spm.zip | matrixprofile.pdf Papers on Matrix Profileshaplet.pdf|Video 1: Shapelets & Motif; Video 2: Lab ARM | |27.| 23.11 09:00-11:00 | Python: Sequential Pattern Mining & Time Series | For SPM see notebooks of previous lecture. timeseries-py.zip| | Video| |28.| 24.11 11:00-13:00 | Python: Time Series. Ethics & Privacy| 19_ethics_privacy2021.pdf | | Video 1; Video 2| |29.| 25.11 09:00-11:00 | Privacy | same slides off the last lecture | | Video| |30.| 30.11 09:00-11:00 |Explainability | 20_explainability_2021.pdf | | Video| |31.| 01.12 11:00-13:00 |Anomaly Detection + Python: XAI | XAI Notebook | | Note: unfortunately the Video on the lecture on AD does not work. You can only hear my voice but the vieo is not available. Sorry. Video - AD - Only audioVideo Python XAI| |32.| 02.12 09:00-11:00 |Python: XAI + AD| Anomaly Detection Notebook| | Video| |33.| 07.12 09:00-11:00 |Paper Presentation| | | | |34.| 09.12 09:00-11:00 |Paper Presentation| | | | |35.| 14.12 09:00-11:00 |Paper Presentation| | | | |36.| 15.12 11:00-13:00 |Paper Presentation| | | | ====== Exams ====== Project A project consists in data analyses based on the use of data mining tools. The project has to be performed by a team of 3 students. It has to be performed by using Python. The guidelines require to address specific tasks. Results must be reported in a unique paper. The total length of this paper must be max 25 pages of text including figures. The students must deliver both: paper (single column) and well commented Python Notebooks. * First part of the project consists in the assignments described here: Project Description - Dataset:Twitter Data - Deadline: the fist part has to be delivered within November 5th 2022 12, 2022. Send an email to: [email protected], [email protected], [email protected] * Second part of the project consists in the assignment described here: Updated Project Description - Deadline: Jan 8, 2023 * Third part of the project consists in the assignment described here: Complete Project Description - Note that the document contains also rules for the delivery and final exam! - Deadline: Jan 8, 2023 Students who did not deliver the above project within Jan 8, 2023 need to ask by email a new project to the teachers. The project that will be assigned will require about 2 weeks of work and after the delivery it will be discussed during the oral exam. Paper Presentation (OPTIONAL) Students need to present a research paper (made available by the teacher) during the last week of the course. This presentation is OPTIONAL: Students that decide to do the paper presentation can avoid the oral exam with open questions. They only need to present the project (see next point). The paper presentation can be done by the group or by a single person. Oral Exam * Project presentation (with slides) – 10-15 minutes: mandatory for all the students * Open questions on the entire program: optional only for students opting for paper presentation. ====== Previous years ===== Data Mining (309AA) - 9 CFU A.Y. 2021/2022 Data Mining (309AA) - 9 CFU A.Y. 2020/2021 DM-2019/20

magistraleinformatica/dmi/dm-inf_2022-2023.txt · Ultima modifica: 05/09/2023 alle 17:46 (15 mesi fa) da Anna Monreale

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki